

2015 CO₂ Conference Week

Wednesday, December 9, 2015

Seminar on the Origins, Processes and Exploitation of Residual Oil Zones

Midland Center

Midland, Texas

Table of Contents for the ROZ Seminar

Section

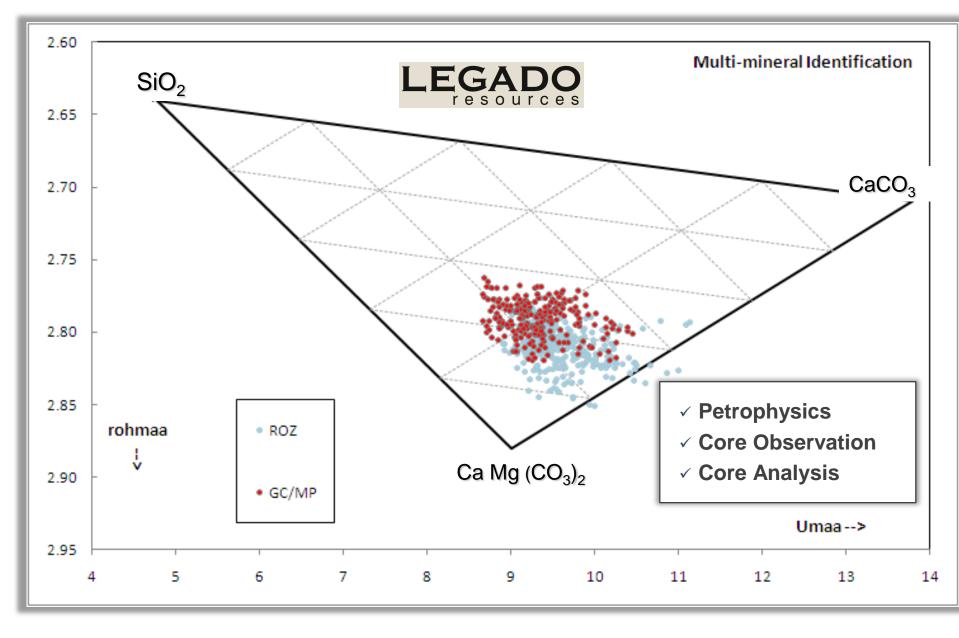
1	Introduction: The Evolving Understanding of ROZsMelzer
2	The Science of ROZsTrentham/Vance
3	ROZ Properties and CharacteristicsMelzer
	Break
4	The Permian Basin ROZ Resource (San Andres
	Formation)V Kuuskraa/ARI
5	CO ₂ EOR and Depressuring the Upper ROZ (DUROZ)
	Case HistoriesTrentham/Melzer
6	Big Horn Basin (Wy) ROZsEORI/Melzer
7	Williston Basin (ND, SD) ROZsMelzer
8	ROZ Wrap-up and Buffet LunchMelzer

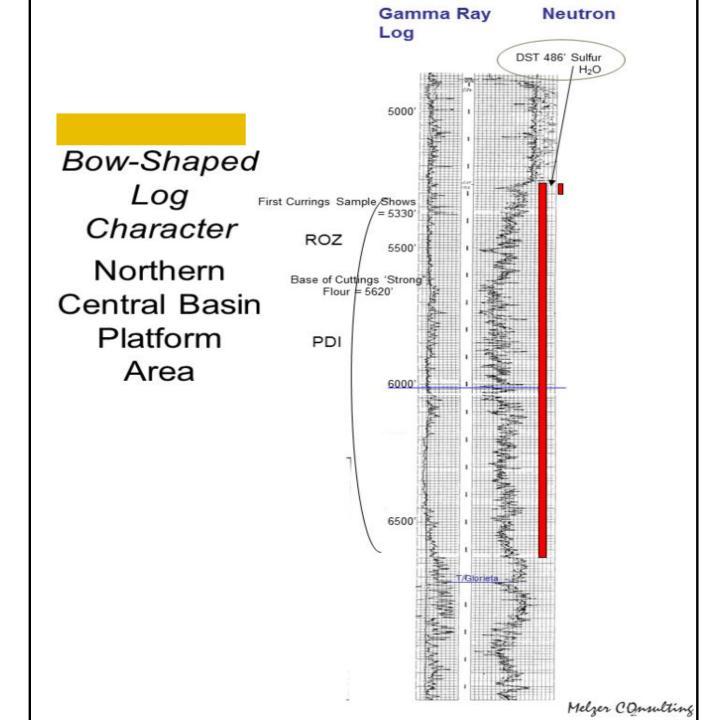
Optional Field Trip to Seminole San Andres Unit (Separate Ticket Required) 5:30 -7:30 pm - Reception at the Midland Center

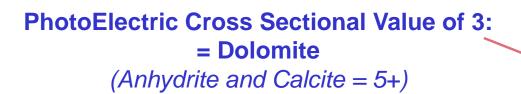
Section 3

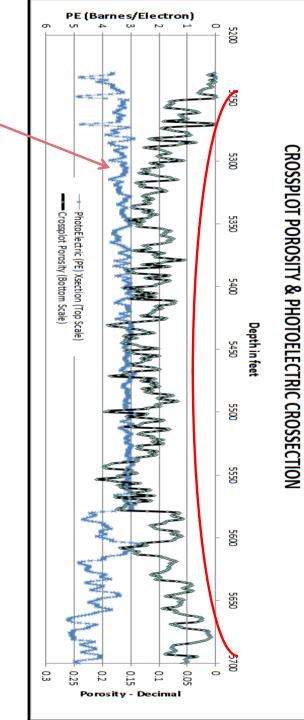
ROZ Rock and Fluid Properties and Characteristics

What the Field Data Tells Us

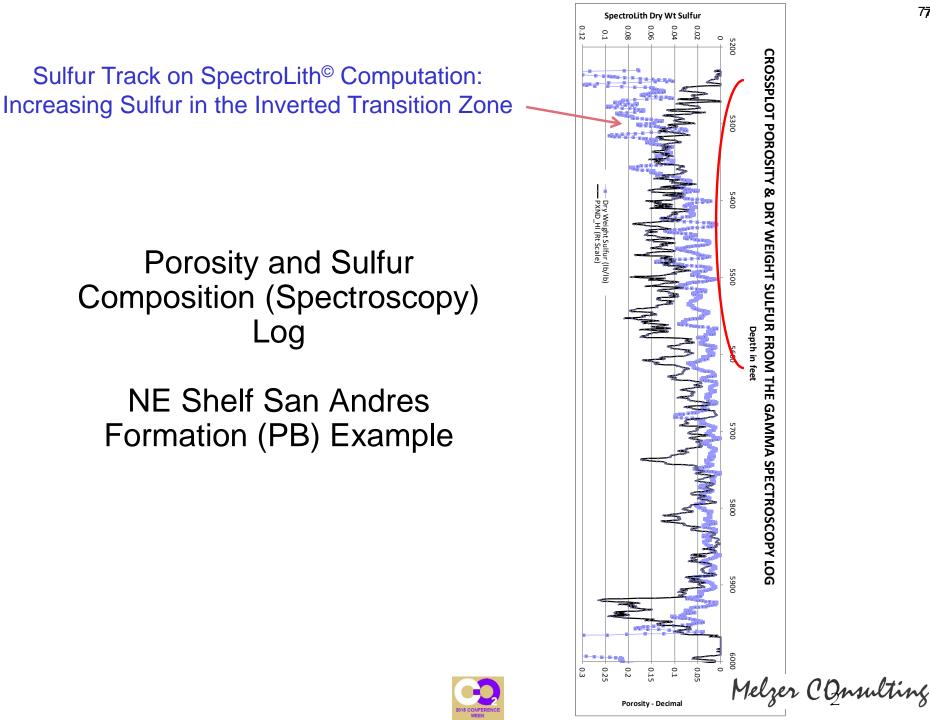

Steve Melzer


ROZ Rocks/Oils/Waters


- Late Stage Diagenetic Overprinting
- ROZ Oils
- ROZ Waters


Adapted from Thurman, Legado Resources, CO₂ Flooding Conference, Dec 2010

Porosity and PhotoElectric Cross Section Log


> Northern PB San Andres Formation Example

7166

Melzer CQnsulting

What Do We Know About ROZ Oils?

SSAU MPZ and ROZ Oils

Table 5. MPZ/ROZ Fluid PVT and Flow Tests*

Toot Turne	Laboratory Test	1978-79	1987	2008	2009
Test Type	Laboratory Test	Study	Study	Study	Study
	Composition	Х	X	Х	
	Psat	· X	X	Х	
	Constant				
Routine PVT	Composition		Х	Х	
	Expansion (CCE)	Х			
	Differential Liberation		x		
	(DL)	Х	^		
	Separator Tests	Х	Х	Х	
	Viscosity	Х	X		
	Swelling Test	Х			
Special PVT	CCE Oil + CO ₂	Х	•		
	Viscosity Oil + CO2	х			
	Slim Tube Flow Test	Х	Х	Х	
Flow Tests	MMP Estimate			Х	
	Core Flooding (Water				
	Flooding Followed by				Х
	CO ₂ Flooding)				

* Ref: SPE 133089, Honarpour, M.M. et al (2010), Rock-Fluid Characterization for Miscible CO₂ Injection: Residual Oil Zone, Seminole Field, Permian Basin

MPZ and ROZ Oil Comparisons

Component	Compos	ition (mole%)		
	1978-79 MPZ	1987	2008-09	
	1010-10 101 2	ROZ	ROZ	
N2	0.51	0.02	0.04	
CO2	2.47	0.02	0.02	
H2S	1.96	0	0.00	ROZ
C1	24.65	20.12	20.10	Oils
C2	9.10	9.04	9.07	Chis
C3	7.57	6.86	6.95	
iC4	1.41	0	0.04	
nC4	4.03	3.84	3.90	
iC5	1.76	0.03	0.04	
nC5	2.03	2.3	2.49	
C6	3.54	2.82	2.69	
C7+	40.97	54.95	54.66	
Total	100.00	100	100.00	4
MWC7+	224		261	
Live Oil MW	142	158	158	N

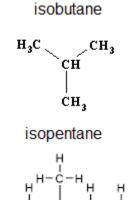
Table 4. ROZ Fluid Composition*

* Ref: SPE 133089, Honarpour, M.M. et al (2010), Rock-Fluid Characterization for Miscible CO₂ Injection: Residual Oil Zone, Seminole Field, Permian Basin

Remember this Slide?

 $D_4 + HC \implies CaO_3 + H_2O + H_2S$ Abiot/ic Chemical Reactions O₃+ Mg_ $MgCa(CO_3)_2$ CaC Picked up as Flush Let's Think about the Consumed Water Moves **Hydrocarbons**

through Mg Salts?


MPZ and ROZ Oil Comps

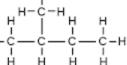

Component	Compos				
	1978-79 MPZ	1987 ROZ	2008-09 ROZ		
N2	0.51	0.02	0.04		
CO2	2.47	0.02	0.02		
H2S	1.96	0	0.00		
C1	24.65	20.12	20.10		
C2	9.10	9.04	9.07		J
C3	7.57	6.86	6.95		
iC4	1.41	0	0.04		
nC4	4.03	3.84	3.90		
iC5	1.76	0.03	0.04		
nC5	2.03	2.3	2.49	,	
C6	3.54	2.82	2.69		
C7+	40.97	54.95	54.66		H-
Total	100.00	100	100.00		
MWC7+	224	252	261		
Live Oil MW	142	158	158		

Table 4. ROZ Fluid Composition*

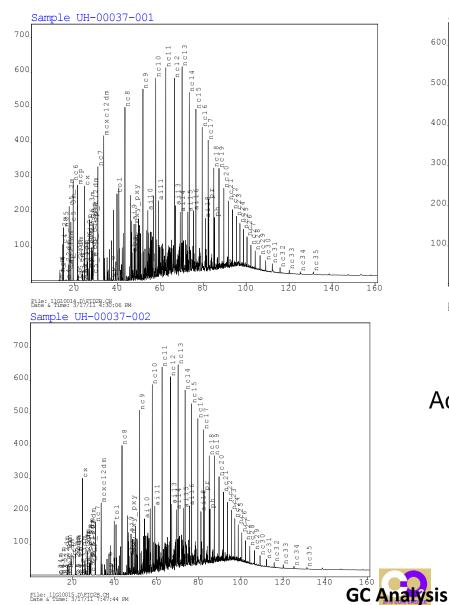
* Ref: SPE 133089, Honarpour, M.M. et al (2010), Rock-Fluid Characterization for Miscible CO₂ Injection: Residual Oil Zone, Seminole Field, Permian Basin

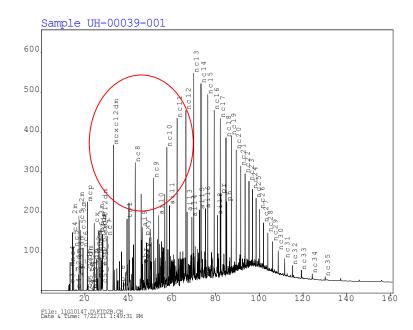
Other Permian Basin Oil Data

Hypotheses

- Microbes (Anaerobes) modify oil composition
- Microbes (Anaerobes) create H₂S during the process of oil composition modification (source the S from anhydrite)
- A variety of Sulfurous Chemicals are also a by-product of the Anaerobic Process

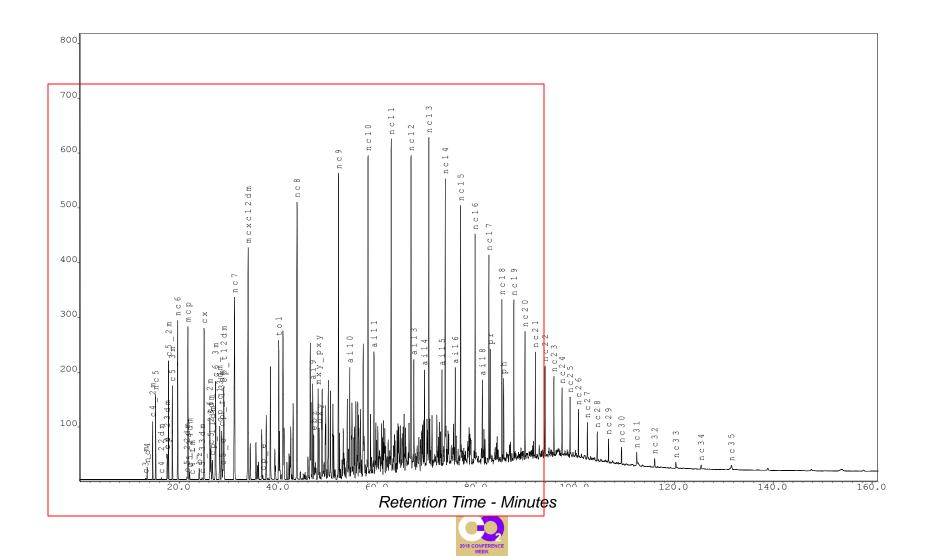
So what evidence of these processes do we have?


The Anedoctal Evidence

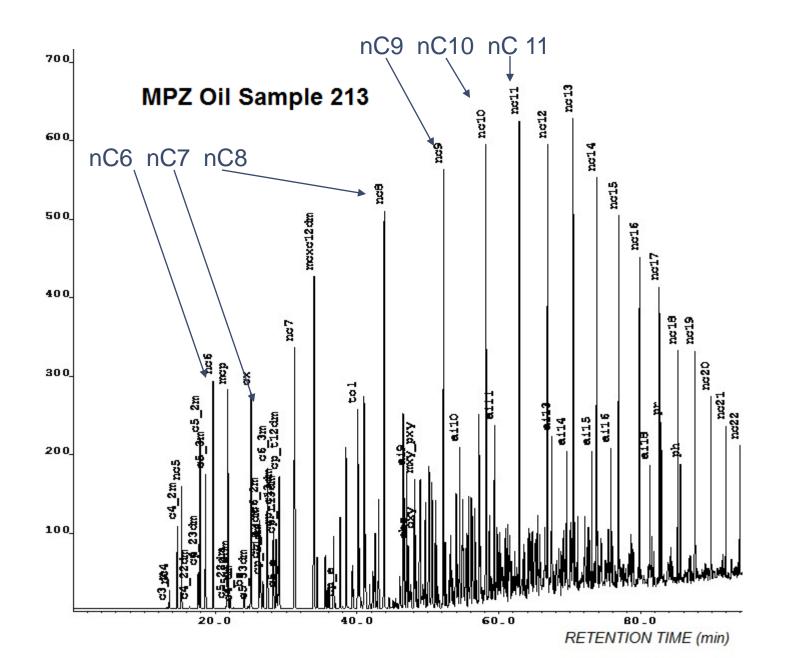

- Sour Oil and "Sulfur Water"
- And How about oil composition changes?

Permian Basin, San Andres Oil from Goldsmith Field

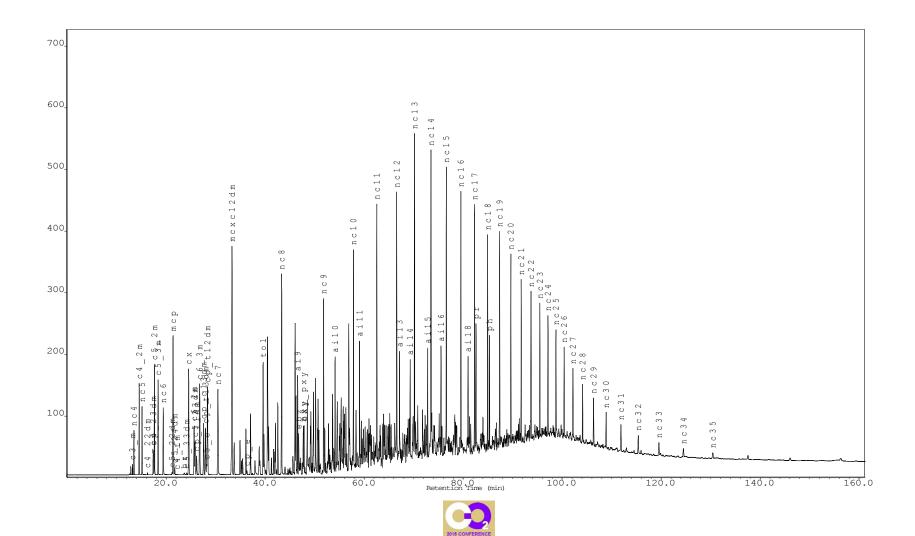
MPZ Reservoir Oil

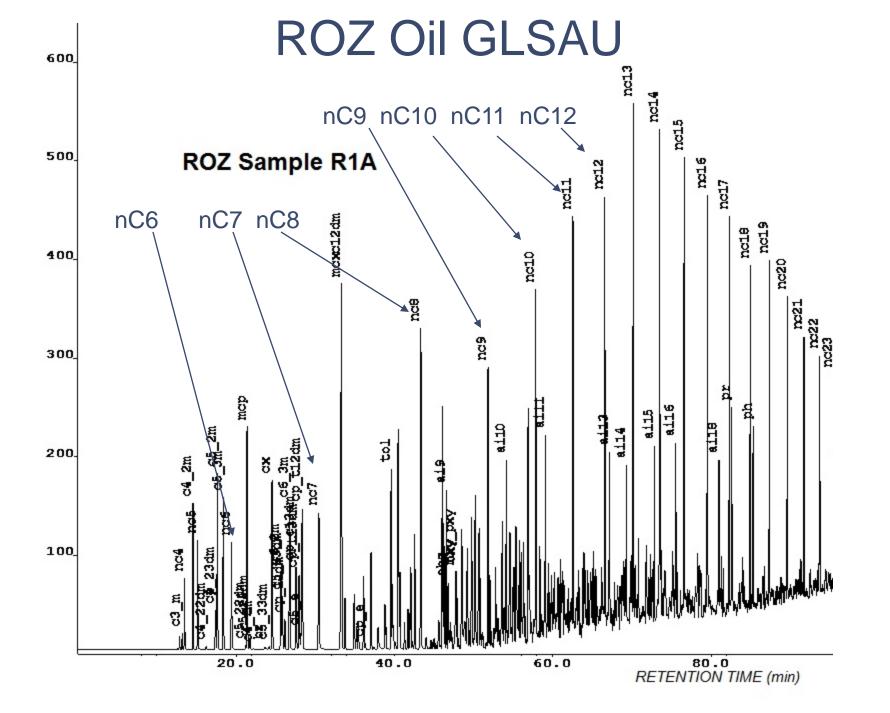


Acquired with corporate support from



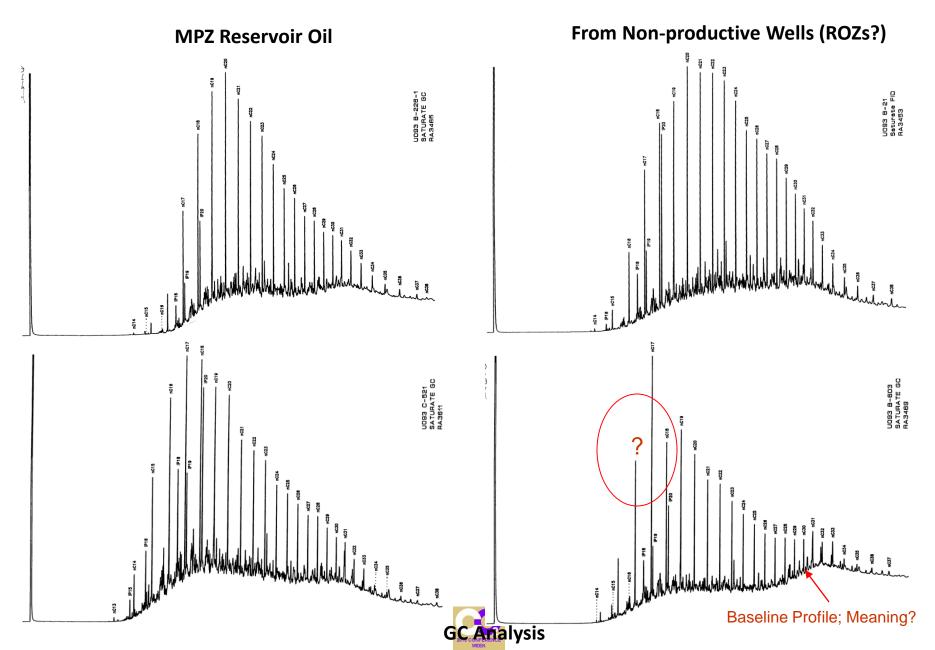
From ROZ Interval


GLSAU MPZ Oil Sample #213 – GC Results (MPZ Reference)



MPZ OII GLSAU

ROZ Oil GLSAU GC Results Sample R1A


Another Basin,

Another (heavier) Oil

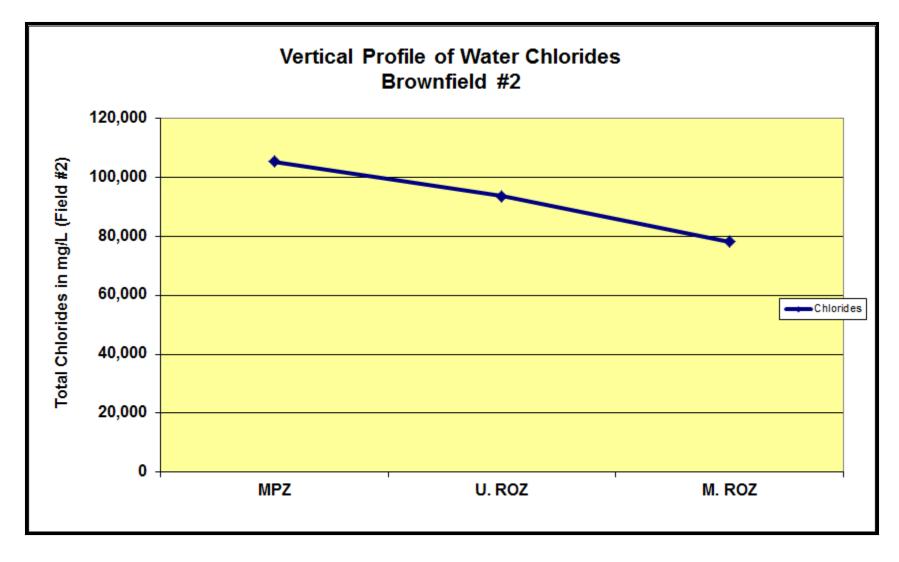
Bighorn Basin, Wy Tensleep Oll Oil Properties are similar in TZ/ROZ and MPZ*

Needed Work

- Get Oil Samples from Various Vertical Positions in the Type 3 ROZs
- Get Oil Compositions Paying Close Attention to Miscible-critical Components (C-5 to C-20)
- Get and Analyze Oils from Type 1 and 2 ROZs to Compare to MPZ Oils
- Look at Both Microbial and Diffusivity Explanations for HC Component Reductions

What Do We Know About Type 3 ROZ Water?

PB Field #1


Table 3. ROZ Oil, H₂O and CO₂ Properties at 2000 psia and 105 °F*

Fluid	Viscosity	Density	CO2 Inj	ection	CO ₂ Sc	olubility se	cf/stb	IFT
	сР	lb/cft	Swelling	Viscosity	H ₂ O	Brine	ROZ Oil	dynes/cm
Oil	1.2119	46.4042	77%	0.477			1600	< 0.2
CO2	0.0564	43.7874						5
Water	0.7179	62.1753	6%	0.706	176	50		

* Ref: SPE 133089, Honarpour, M.M. et al (2010), Rock-Fluid Characterization for Miscible CO₂ Injection: Residual Oil Zone, Seminole Field, Permian Basin

PB Field #2 – Water Salinities

Big Horn and Other Basins Water Salinities

• Water Can Actually be "Fresh"

These Type 3, Laterally Flushed, ROZs can be thought of in a Pore Volume Flushing Context

 In our First RPSEA Report (West Side of the Central Basin Platform), we Modeled and Calculated the San Andres Hydrodynamic Flushing at 17-46 Total Pore Volumes (15 million years) using DST*-derived Permeabilities

Proximity to Source Waters For Type 3 ROZs

- The Closer to the Source and
- The Higher the Formation Permeability

Then The Greater the Pore Volume Flushing and Fresher the Water

- Does that Affect the Residual Oil Saturation? That is, is it Like a Low Salinity Water Flood?
- Should We Expect Variable Waters Even in a Project Area (Vertically, Horizontally)?

Section 4

The Permian Basin ROZ Resource (San Andres Formation)

Our report on this is pending and under review at RPSEA and DOE)

Vello Kuuskraa Advanced Resources International

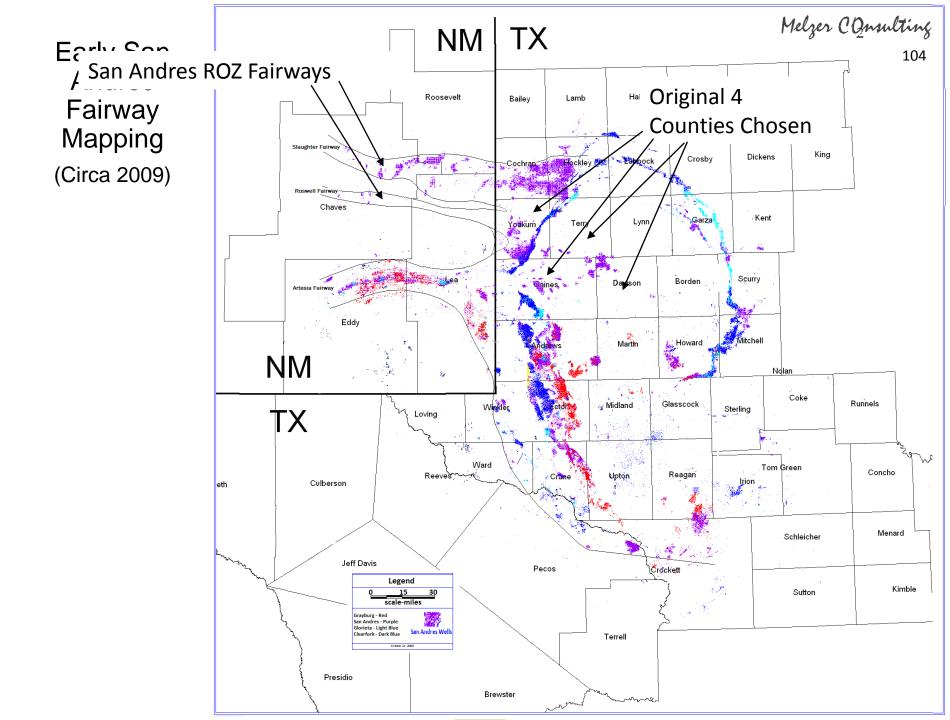
The Three Residual Oil Zone Resource Studies to Date

- 2006 Brownfields Beneath 56 fields (45 San Andres/Grayburg Fields)
- 2014 Four County Greenfield ROZ Study (All San Andres)
- 2015 Eight County Greenfield ROZ Study (All San Andres)

Summary of ROZ Brownfield Study

Field/Unit	TZ/ROZ OOIP (BB)	No. of Fields	No. of MPZ Fields with CO2- EOR Projects	No. of Fields with TZ/ROZ CO2-EOR Projects
1. Northern Shelf Permian				
Basin (San Andres)	13.2	13	5	1
2. North Central Basin Platform				
(San Andres/Grayburg)	2.6	6	2	1
3. South Central Basin Platform				
(San Andres/Grayburg)	7.9	16	5	0
4. Horseshoe Atoll (Canyon)	2.9	10	4	2
5. East New Mexico (San				
Andres)	4.1	11	2	0
Total	30.7	56	18	4

Brownfield Recoverable Resources


Field/Unit	Total CO ₂ -EOR (BB)	MPZ CO ₂ -EOR (BB)	ROZ CO2-EOR (BB)
1. Northern Shelf Permian			
Basin (San Andres)	8.3	2.8	5.5
2. North Central Basin Platform			
(San Andres/Grayburg)	1.5	0.6	0.9
3. South Central Basin Platform			
(San Andres/Grayburg)	4.6	1.7	2.9
4. Horseshoe Atoll (Canyon)	2.7	1.4	1.3
5. East New Mexico (San			
Andres)	1.7	0.4	1.3
Total	18.8	6.9	11.9

RPSEA II Study Foundation: San Andres Fairway Mapping

November 2015

In-Place San Andres ROZ "Fairway" Resources: Four-County Area of West Texas

		In-Place Resources			
County	Total (B Bbls)	Higher Quality (B Bbls)	Lower Quality (B Bbls)		
Gaines	45.5	35.4	10.1		
Yoakum	20.7	16.1	4.6		
Terry	17.9	10.6	7.3		
Dawson	27.8	14.6	13.2		
Total	111.9	76.7	35.2		

Source: Advanced Resources International, 2015.

Also Performed a Recoverable Resource Estimate and Checked Against First Draft of KM's "Tall Cotton" Recoverables

Exhibit 7.3.3 (EX-3) Comparison of Gaines County Volumetric San Andres ROZ "Fairway" Reservoir Properties: Tall Cotton ROZ "Fairway", Seminole Oil Field ROZ, and This Study's Partition #3

Volumetric Reservoir	Seminole Oil Field ROZ ^{1, 2}	"Tall Cotton" ROZ "Fairway" ³	This Study Partition #3			
Properties	(ROZ "1" Only)	(ROZ "1" & ROZ "2")	ROZ "1"	ROZ "2"	Total	
Gross Pay (feet)	246	540	244	248	492	
Net Pay (feet)	197	450	208	224	432	
Porosity (%)	12.8%-15%	12%	10.2%	9.7%	10%	
Oil Saturation (%)	32%	35% to 50%	36%	36%	36%	

¹Honarpour, M., 2010. ²Bush, J., 2001. ³ Railroad Commission of Texas, 2014.

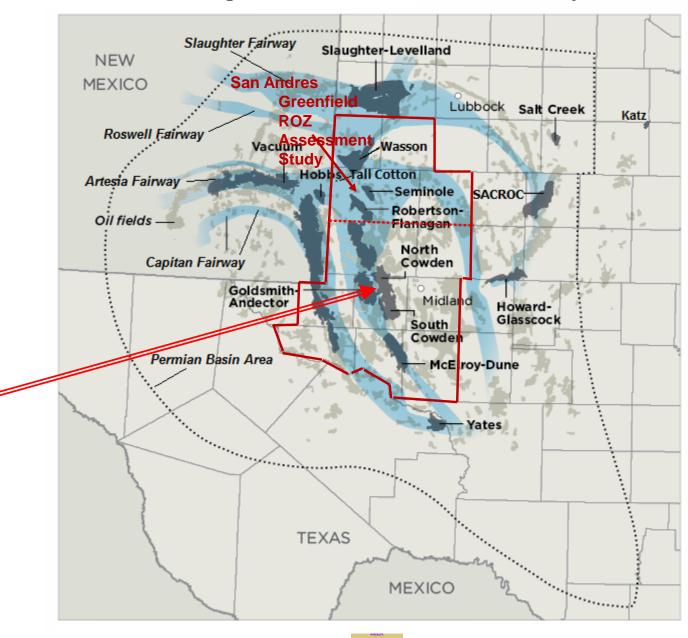
Source: Advanced Resources International, 2015.

What portion of this in-place San Andres ROZ "fairway" oil resource can be mobilized

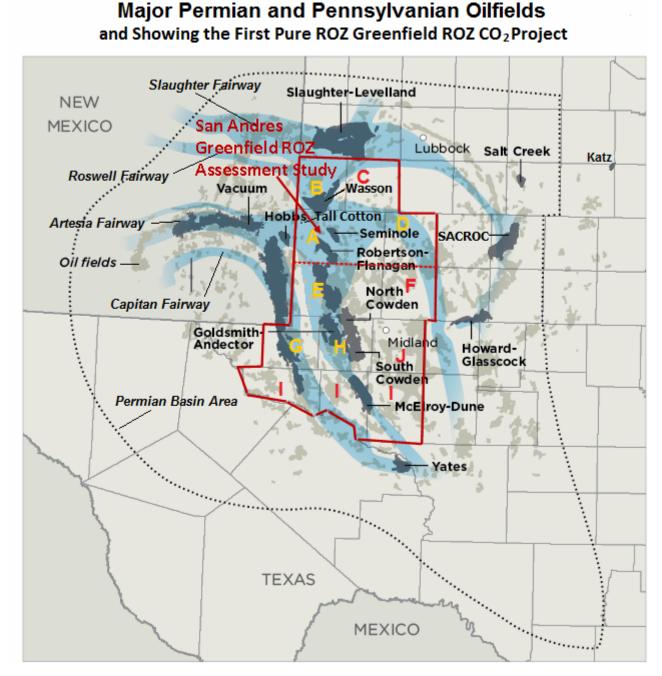
Recoverable Resources (4-County Study)

Exhibit 7.3.4 (EX-4) Technically Recoverable San Andres ROZ "Fairway" Resources: Four-County Area of West Texas

County	Technically Recoverable Resources						
	(B Bbls)	(% OIP)					
Gaines	12.1	27%					
Yoakum	4.9	24%					
Terry	3.2	18%					
Dawson	5.5	20%					
Total	25.7	23%					


Source: Advanced Resources International, 2015.

Expanded OIP Resource Study to 8 More Counties (2015)



Residual Oil Zone Fairway Mapping with Superimposed Major Permian and Pennsylvanian Oilfields and Showing the First Pure ROZ Greenfield ROZ CO₂Project

12-County ROZ Study (ARI)

2014 (4-county) and 2015 (8-county)

Residual Oil Zone Fairway Mapping with Superimposed

12-County Greenfield ROZ Resources

ы	E County by County San Andres Greenfield ROZ Study (LSM, ARI, RPSEA II/DOE)										
Jati		-	-	-		(G/E)		-	(I/G)	(J/G)	
sign				ARI		Calculated	ARI	ARI	Estimated (Calc'd)	Estimated	ARI Technically
De		County	County	Est ROZ Acreage		%age of	TOTAL ROZ OIP	HIGHER QUAL ROZ	Average Co-wide	Average Co-wide	Recoverable
Co. Designation	PB Texas	mi^2	(Acres)	(Acres)		County	Million bbls	OIP, Million bbls	TOT ROZ bbls/AC	HQ ROZ bbls/AC	Million bbls
A	Gaines	1,503	961,920	858,000	•	89%	45,500	35,400	53,030	41,259	12,100
в	Yoakum	800	512,000	421,000	1	82%	20,700	16,100	49,169	38,242	4,900
С	Terry	891	570,240	549,000	1	96%	17,940	10,600	32,678	19,308	3,182
D	Dawson	902	577,280	562,000	1	97%	27,770	14,610	49,413	25,996	5,486
E	Andrews	1501	960,640	657,600	1	68%	37,130	31,230	56,463	47,491	NC
F	Martin	916	586,240	353,700	1	60%	6,740	4,800	19,056	13,571	NC
G	Winkler	841	538,240	342,800	1	64%	9,470	7,980	27,625	23,279	NC
н	Ector	902	577,280	348,300	1	60%	6,950	5,500	19,954	15,791	NC
1	Upton	1242	794,880								
1	Crane	786	503,040	760,000		41%	19,180	8,670	25,237	11,408	NC
1	Ward	836	535,040								
J	Midland	902	577,280	n/a		n/a	n/a	n/a	n/a	n/a	n/a
	Running PB Texas Totals			4,856,420			191,715	134,890	36,958 Average	26,261 Average	25,668

Section 5

ON-GOING RESIDUAL OIL ZONE DEMONSTRATION PROJECTS

ROZ Seminar CO₂ Conference December 2015 Bob Trentham & Steve Melzer

Section 5a

CO₂ EOR Case Histories

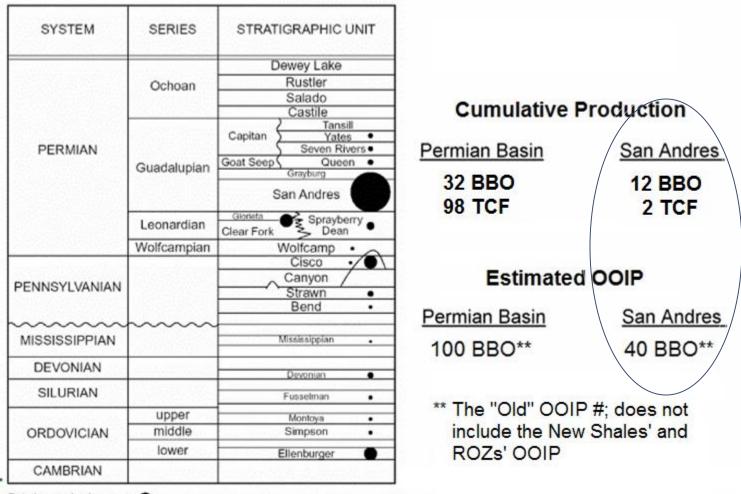
Bob Trentham

There are Two Categories of Projects Currently Exploiting the ROZ

(This Section has an Engineering Emphasis)

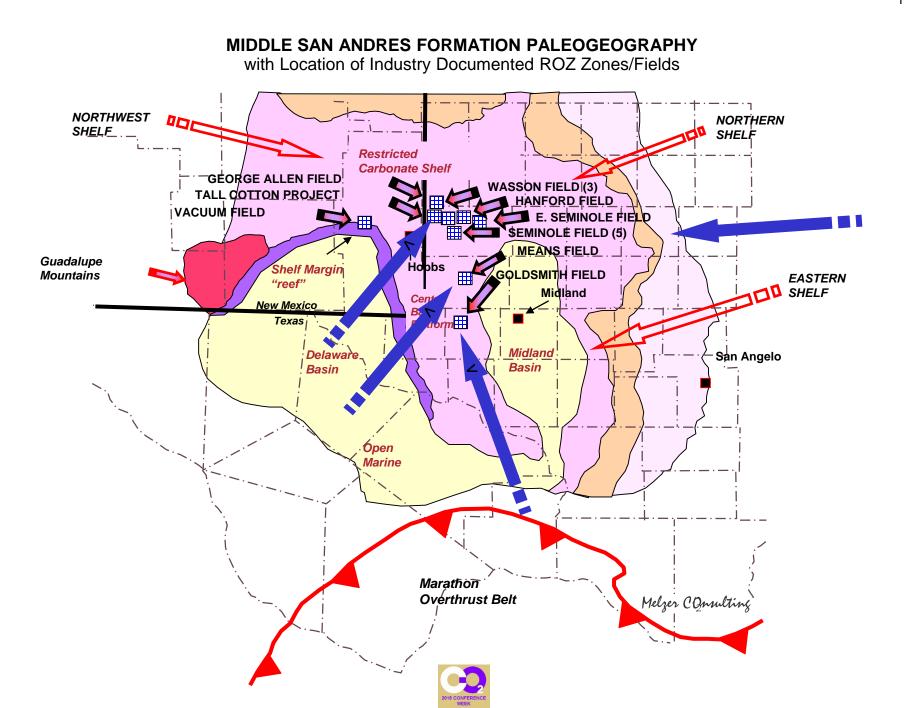
- a. EOR Exploitation (currently limited to CO_2 EOR and the Permian Basin)
- b. Depressuring the Upper ROZ (DUROZ) also Occasionally Referred to as Depressuring EOR

Subsection 5a


ON-GOING CO2 EOR RESIDUAL OIL ZONE DEMONSTRATION PROJECTS

ROZ Seminar CO₂ Conference December 2015

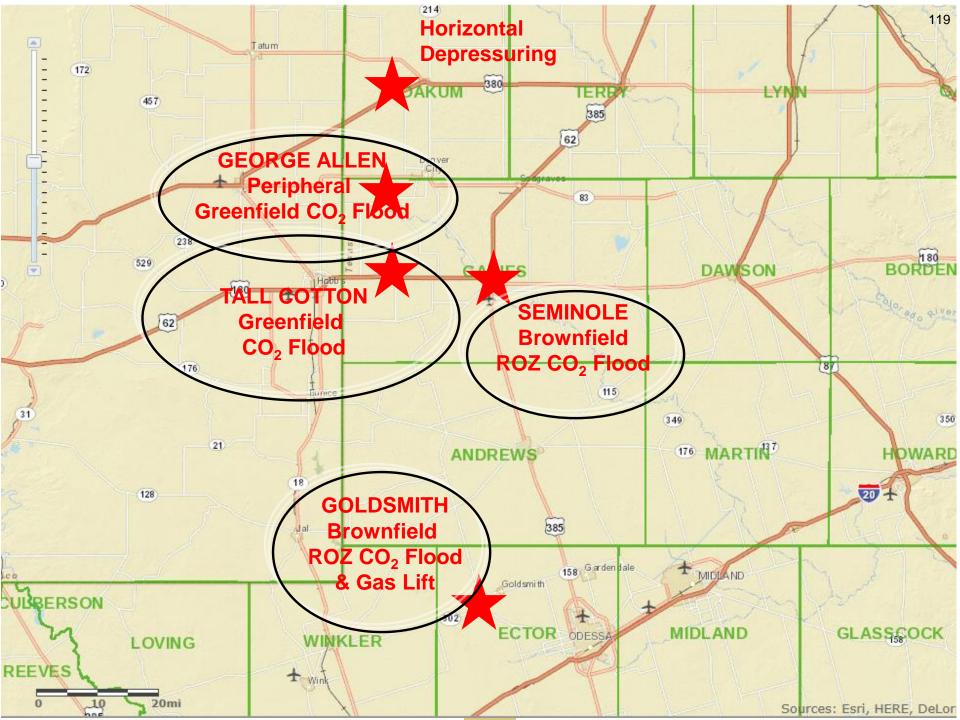
Bob Trentham



Permian Basin Stratigraphic Column, Cumulative Production to Date & Estimated OOIP

The List of On-going ROZ CO₂ EOR Projects

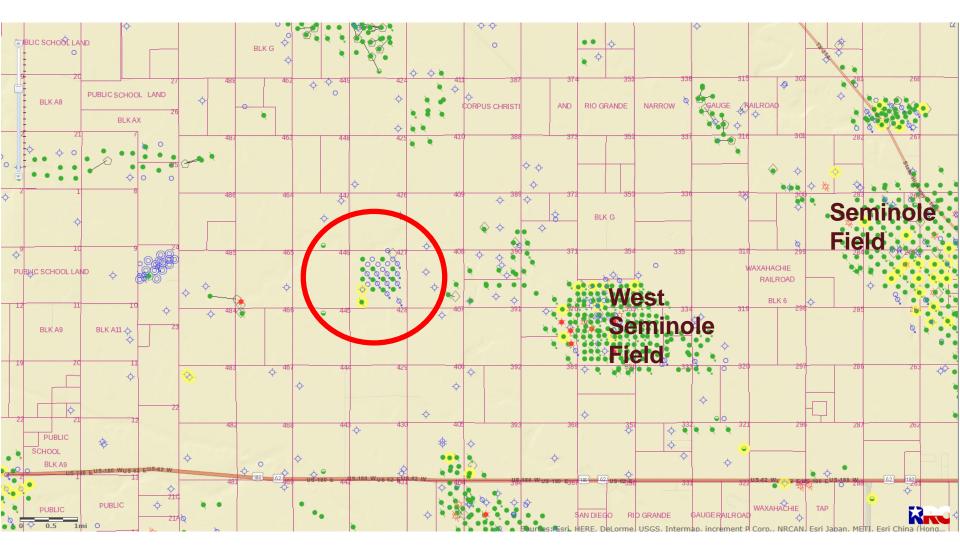
Melzer Comulting as of June 2015


ON-GOING ROZ CO2 EOR PROJECTS IN THE PERMIAN BASIN REGION OF THE U.S.

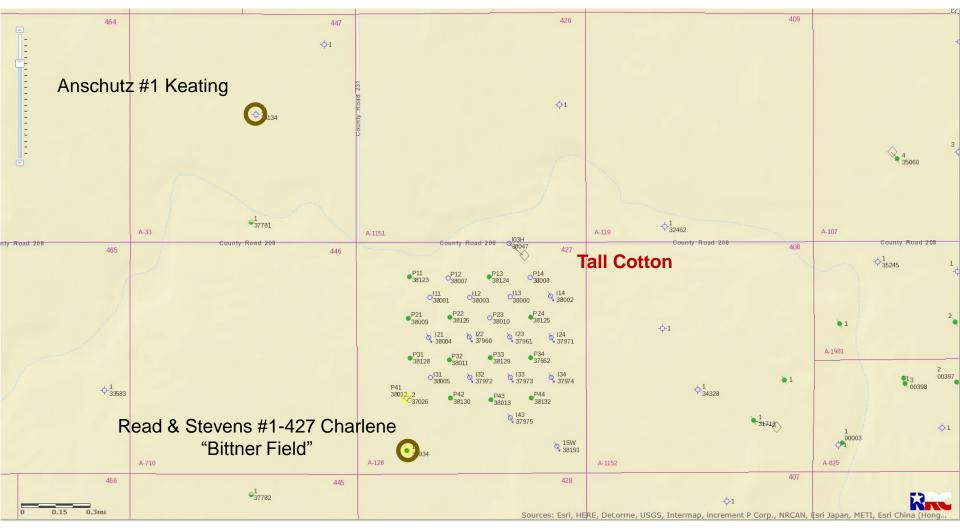
	Type and operator	Field	State	County	Top MPZ Depth, (ft)	Pay zone	Lith-	MPZ Start Date	ROZ Start Date	Strategy
	Active CO ₂ miscible		State	County	(14)		ology	Date	Date	Strategy
1	Chevron	Vacuum San Andres Grayburg Unit	NM	Lea Co.	4,550	San Andres	Dolo.	2007	2007	Commingle
2	Fasken	Hanford	Tex.	Gaines	5,500	San Andres	Dolo.	7/86	8/09	Commingle
3	Hess	Seminole Unit-ROZ Phase 1	Tex.	Gaines	5,500	San Andres	Dolo.	7/83	7/96	Commingle
4	Hess	Seminole Unit-ROZ Phase 2	Tex.	Gaines	5,500	San Andres	Dolo.	7/83	4/04	Deepen (Dedicated*)
5	Hess	Seminole Unit-ROZ Stage 1 Full Field Dev	Tex.	Gaines	5,500	San Andres	Dolo.	7/83	10/07	Commingle
6	Hess	Seminole Unit-ROZ Stage 2 Full Field Dev	Tex.	Gaines	5,500	San Andres	Dolo.	7/83	5/11	Commingle
7	Hess	Seminole Unit-ROZ Stage 3 Full Field Dev	Tex.	Gaines	5,500	San Andres	Dolo.	7/83	7/13	Commingle
8	Kinder Morgan CO2 (Goldsmith-Landreth Unit	l ex.	Ector	4,200	San Andres	Dolo.	8/09	8/09	Commingle
9	Kinder Morgan CO2 (Tall Cotton Pilot Project	Tex.	Gaines	5,250	San Andres	Dolo.	n/a		Green Field ROZ
10	Occidental	Wasson Bennett Ranch Unit	Tex.	Yoakum	5,250	San Andres	Dolo.	6/95	2000	Commingle
11	Occidental	Wasson Denver Unit	Tex.	Yoakum	5,200	San Andres	Dolo.	4/83	1995**	Commingle
12	Occidental	Wasson ODC	Tex.	& Gaines	5,200	San Andres	Dolo.	Nov-84	2005?	Commingle
13	Trinity CO2	George Allen (BF&GF) ***	Tex	Yoakum	4,900	San Andres	Dolo.	12/12	2012	Deepen&Drill
14	Tabula Rasa	East Seminole	Tex	Gaines	5,400	San Andres	Dolo.	1/13	1/13	Commingle
15	XTO/ExxonMobil	Salt Creek	Tex.	Kent	6,300	Canyon Reef	LS	Jun-05	1996	Commingle
16	XTO/ExxonMobil	Means	Tex	Andrews	4,500	GrBrg/San Andres	Dolo.	Nov-83	1/12	Commingle

*** BF = 'brownfield' (requires wells deepenings;

GF = 'greenfield' (requires new wells)


SEMINOLE FIELD

THE "GOLD STANDARD" OF ROZ PROJECTS

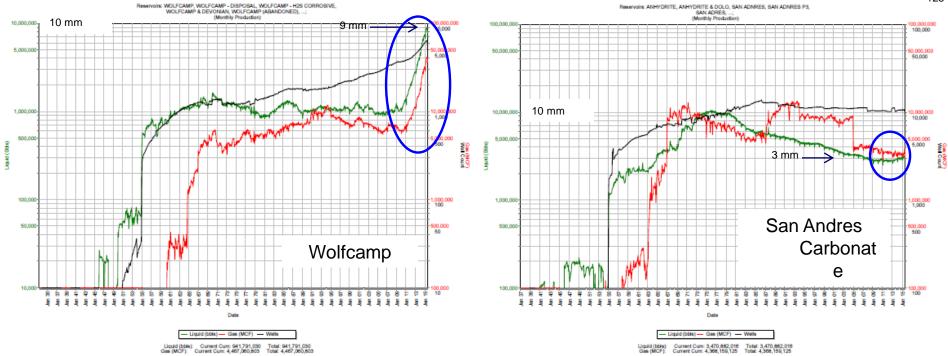

Tall Cotton

A Greenfield project without an associated Main Pay.

2 wells, the #1 Keating and the #1-427 Charlene, provided the information necessary to establish the presence of a significant Greenfield ROZ in the area.

Subsection 5b

EXPLOITING THE RESIDUAL OIL ZONE VIA DEPRESSURING


ROZ Seminar CO₂ Conference December 2015

Steve Melzer

Has the Permian Basin Entered a Second and New Era of Horizontal Well Production?

CONCLUSIONS

- Wolfcamp Oil has effectively caught up with San Andres Oil Production
- Wolfcamp Gas Blows away San Andres Gas (40 bcfpd to 3)
- We Would Suspect the NGL Production Story is a Very Similar One BUT.....is there more to this story?

Other Critical Factors to Consider

- The Carbonate Formation Decline Curve has Historically been very Gentle (4-5% per year) - as witnessed on the last slide
- The Shale Decline Curves are Very Steep Creating the Need to Keep
 Drilling at a Rapid Pace
- The \$100/bbl Oil Era Allowed Technology to Leap Forward; \$40-50/bbl Oil will still have Sweetspots to Exploit - especially in the PB
- Is There Anything New with the Carbonates? Could they be a Hybrid between the Gentler Decline Curve and Big Quick Returns on Investments that the Shales Give?

It is Very New but There is Indeed More to the Story

- A New Horizontal Resource Play (Depressuring the Upper ROZ) in the San Andres has Just Entered the Picture and Shows Promise of Adding Another Dimension to the PB Production Story as Time Moves Forward
- How Big is this New Play?
- What are its Characteristics?
- Does This have Scalability to Other Part of the U.S. and World?

Insights on An Overlooked Production Mechanism and Demonstration Case Histories:

A New and Exciting San Andres Residual Oil Zones Oil Play - Depressuring the Upper ROZ (DUROZ)*

December 2015

* Can Also Be Refered to as Depressuring EOR (DEOR)

Where to Start?

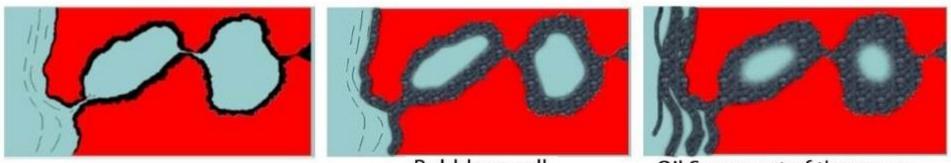
Much has Been Learned About Residual Oil Zones in the Last Decade

Almost all of it from Work Here in the Permian Basin

Current Thinking on ROZ's

- Oil and gas industry thinking has historically believed that residual (immobile) oil can only be recovered using enhanced recovery techniques. The fastest growing technique uses carbon dioxide-enhanced oil recovery ($CO_2 EOR$) and is currently being used to recover oil from ROZs in 15 different projects as you just saw.
- And....these ROZs are Predominately Oil Wet with Large Immobile Oil Targets

Are EOR injection projects the only way?

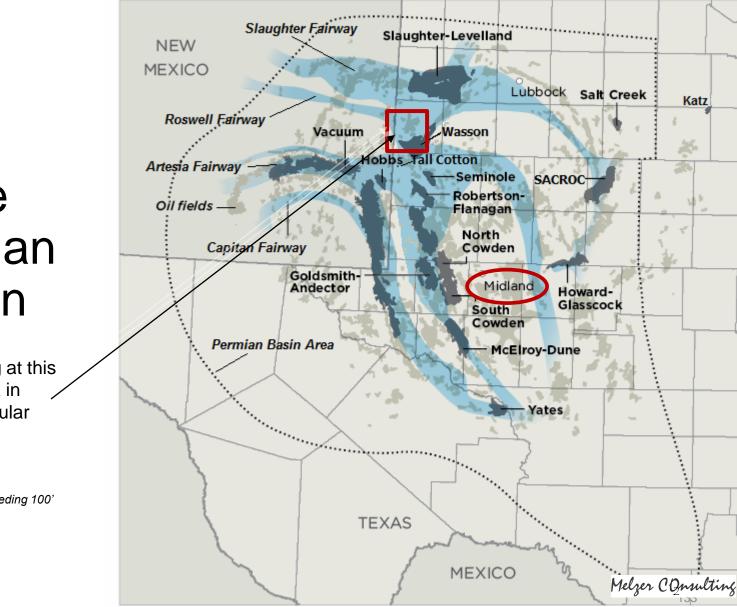

An Exciting New Strategy for ROZ's

- Two companies, drilling and completing horizontal wells in Yoakum County, Tx, have very recently found that they can make a ROZ productive without using an injectant (classic EOR). We believe that they did not originally understand exactly what was controlling the production but, nonetheless, their results are exciting and speak for themselves.
- As of the Present, over 30 wells have been drilled and, after roughly a month of 100% water production, all showed climbing oil cuts and, at the 90th day of production, between 200-300 bbls/day.

How Does ROZ Depressuring Work?

The ROZs have Oil Affixed to the Rock Surfaces and, if that Oil Has Gas in it, Depressuring Releases Some of the Oil and Entrained Gas

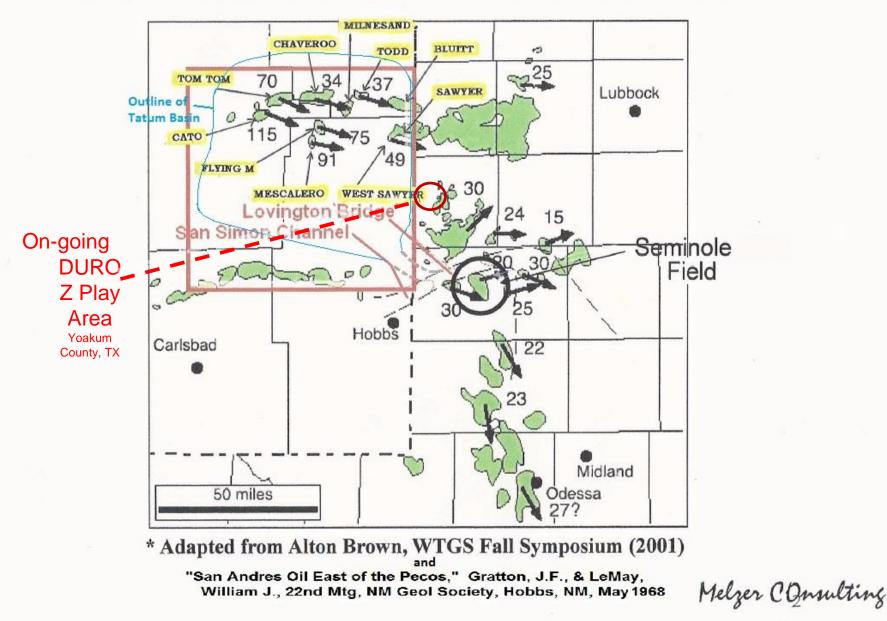
Bubbles swell


Oil Seeps out of the poors....

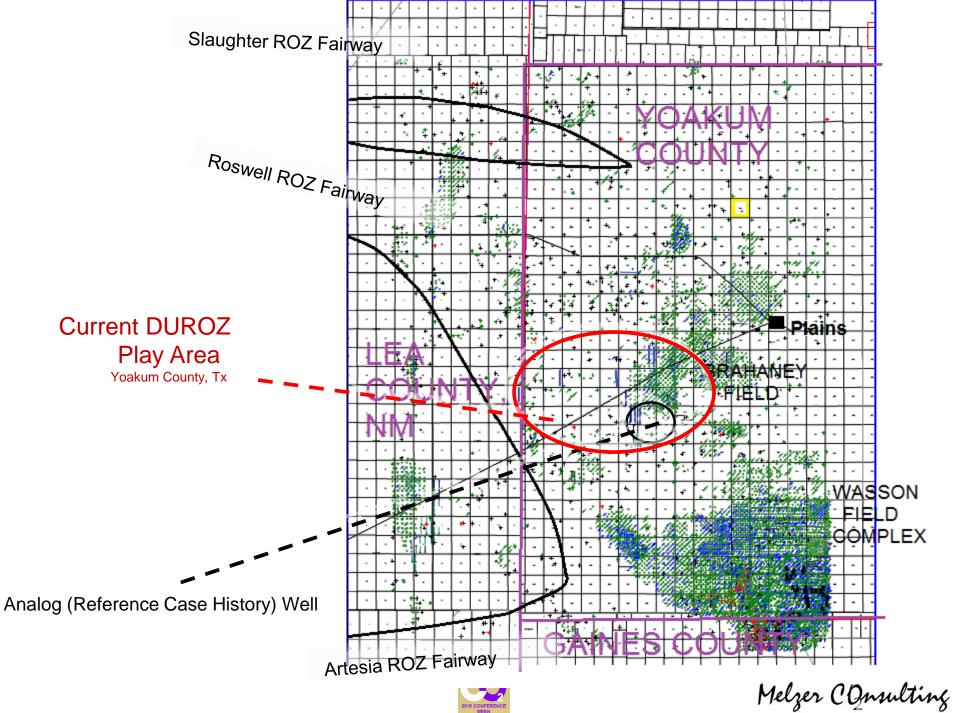
...and into the flowstream to flow to the well. Lots of water is produced to accomplish the depressuring

Melzer Committing

Mapping of Active Major CO₂ EOR Projects in the Permian Basin and Residual Oil Zone Fairways and Showing the First Pure ROZ Greenfield ROZ CO₂Project

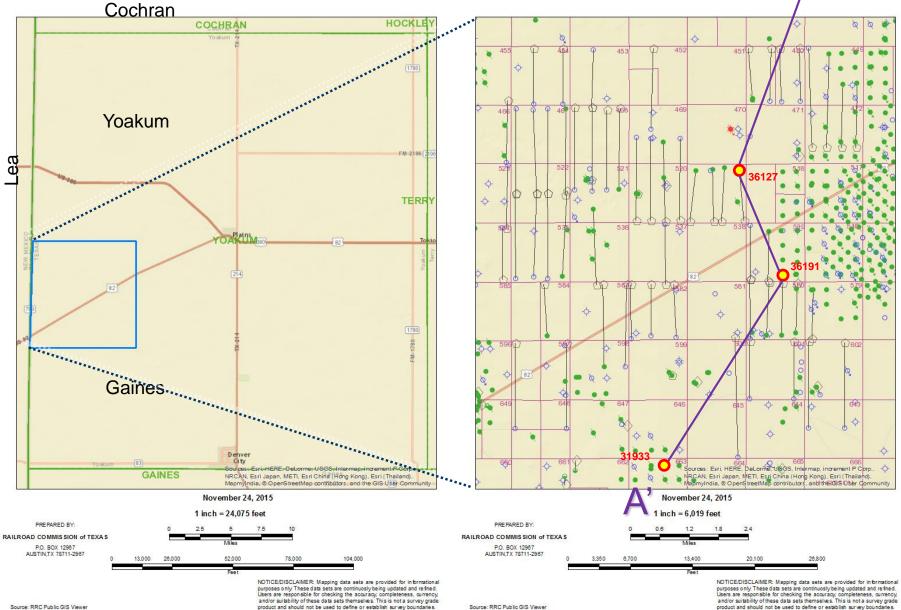


The Permian Basin

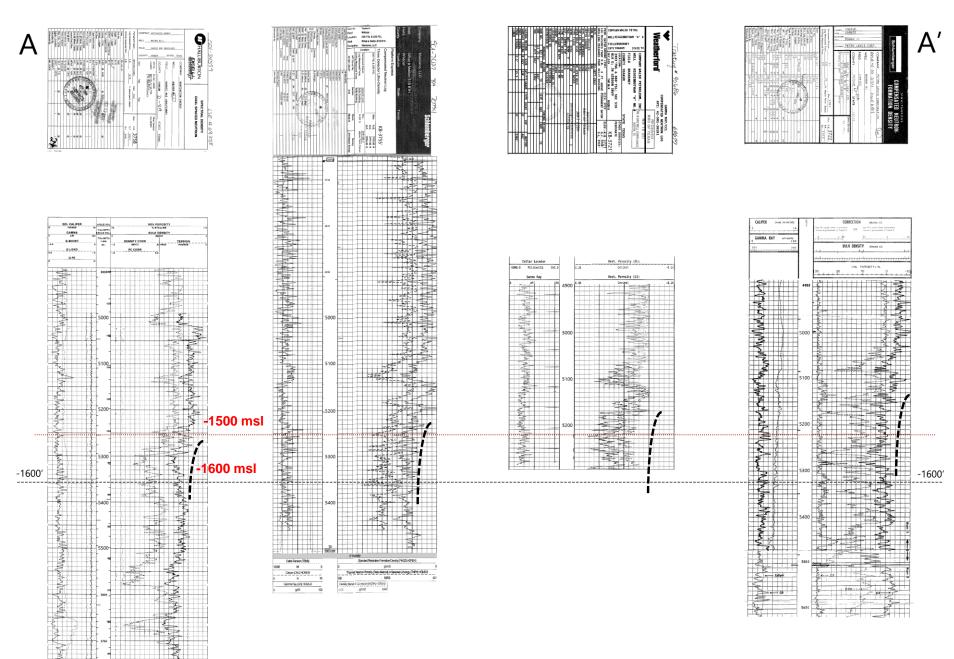

We are looking at this Area in / particular

* ROZ Fairway Thickness Exceeding 100'

Distribution of Tilted Oil-Water Contacts in the Northern Shelf & Central Basin Platform Areas of the Permian Basin*



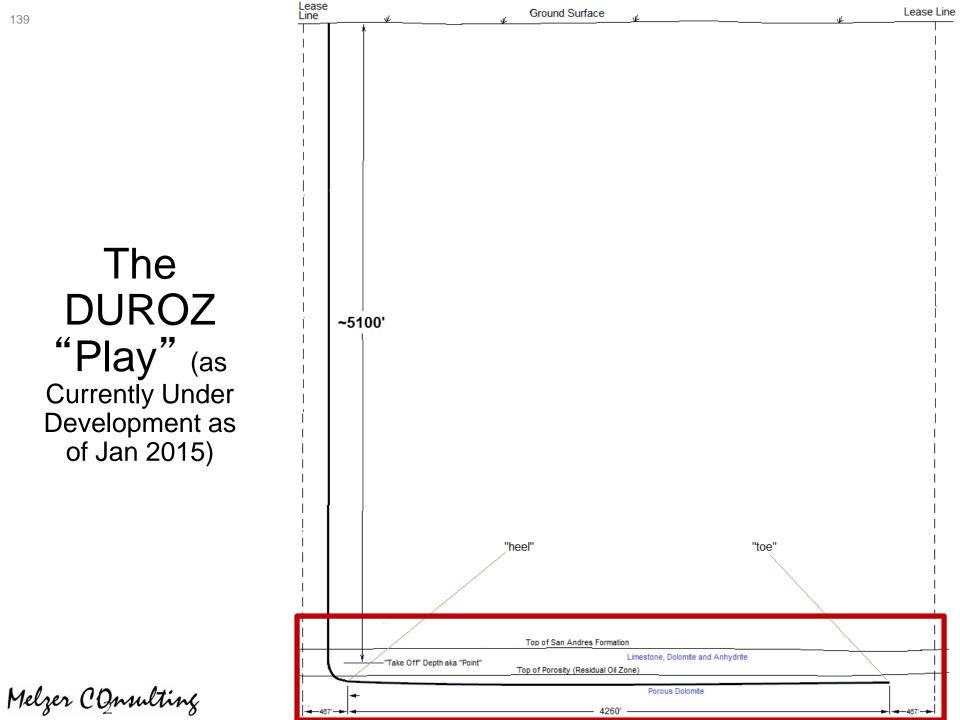
134


Manzano/Walsh Area Map

product and should not be used to define or establish survey boundaries.

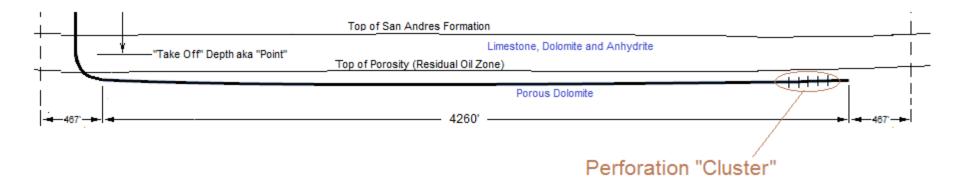
34599

Manzano-Walsh Cross Section A-A' (N-S)



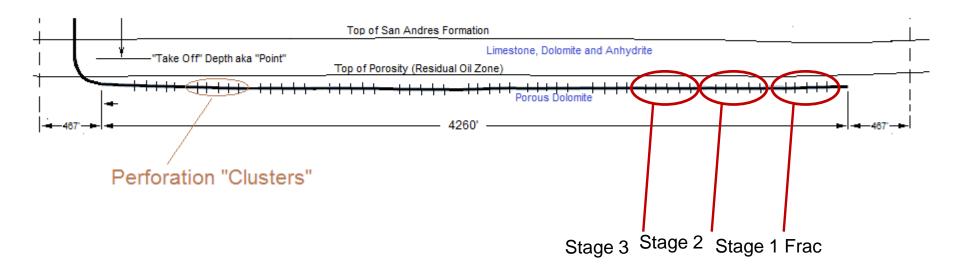
DUROZ*: An Evolving Strategy for Producing the ROZ

- Go to a ROZ Fairway Location, Seek and Secure a Water Disposal Option (all DUROZ ROZ wells produce water cuts in the range of 75-85%)
- Target the Good Gas/Oil Ratio ROZs
- Expose a Large Section (e.g., Long Lateral)
- Stimulate the Zone
- Pump Very Large Volumes of the Water Until Reservoir Pressures Falls Below 'Bubble Point'
- Be Patient
- Watch Oil Cuts Rise


* Reservoir Depressuring the Upper ROZ

Starting the Completion (First Stage Perforation)

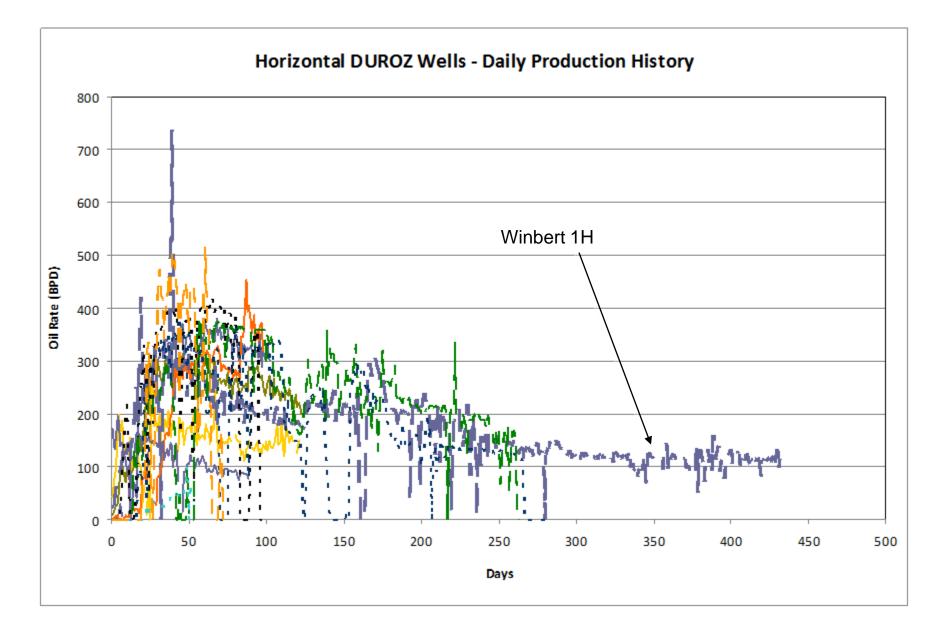
First Stage of a Hydrofacturing Completion


* Hydrofracture Technologies being used include gelled fracs, hybrid fracs and "slickwater" fracs – all successful

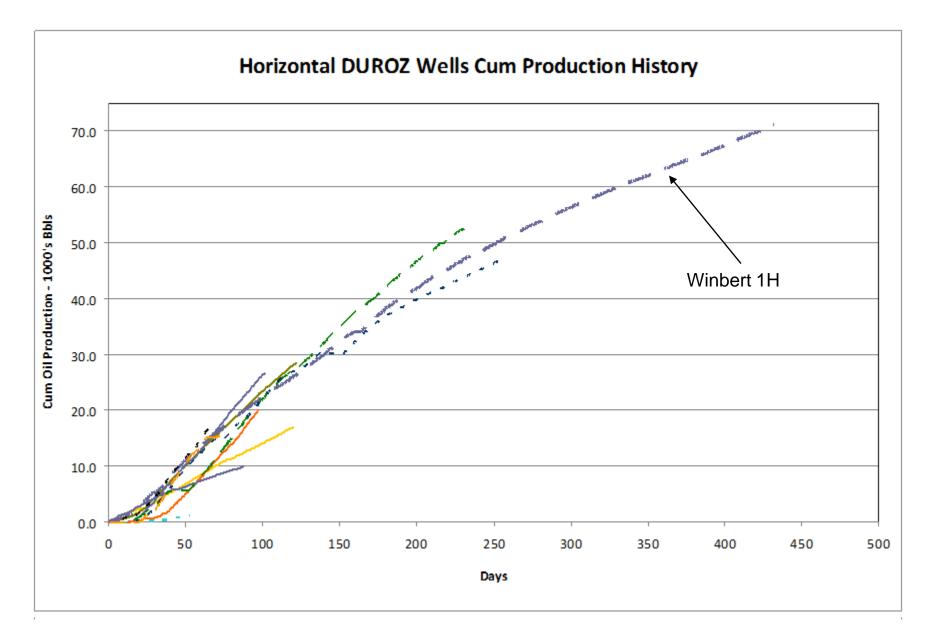
Melzer Consulting

Completing the Perforations (and Readied for Staged Hydraulic Fracturing)

An Eleven Stage Hydrofacturing Completion



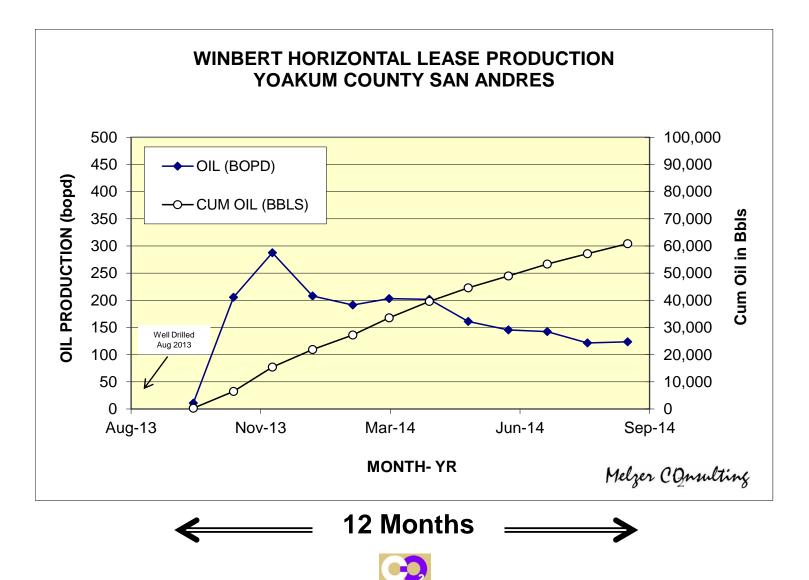
Melzer Consulting


Analog Well Performance (1) (DUROZ Case Histories)

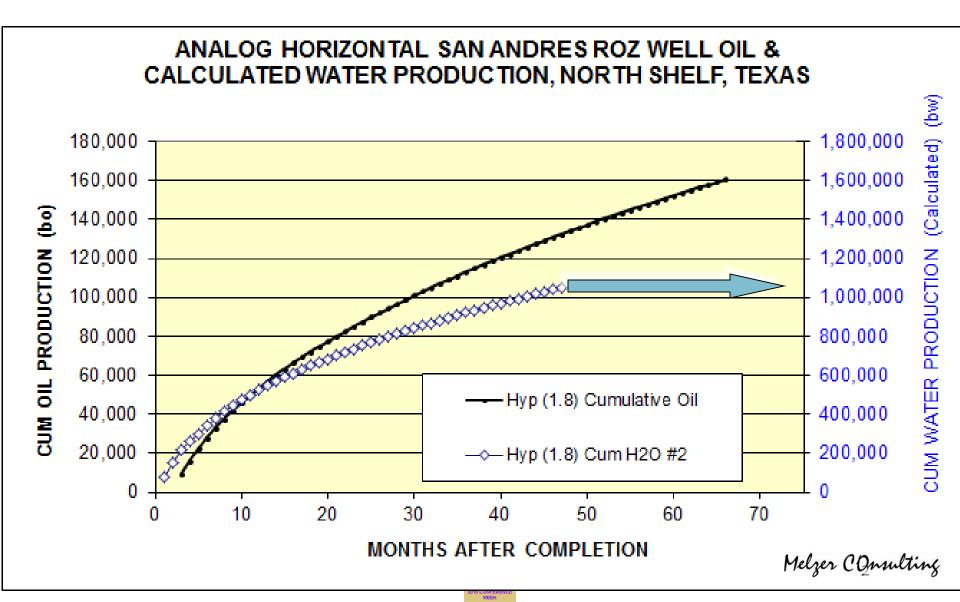
- The following data is from the older upper ROZ wells and one in particular we call our analog horizontal San Andres ROZ well in Yoakum County, Texas
- Since drilling and completing the analog well in late in 2013, 30 more DUROZ wells have been drilled and over 25 completed and, according to our conversations with the two companies involved, hydrofrac optimization is improving on the analog production case history.
- Experimentation has been occurring with 9000' laterals and recent costs of the longer lateral wells has come down to \$2.75 million where the 4500' lateral costs range from \$1.8-2.1 million

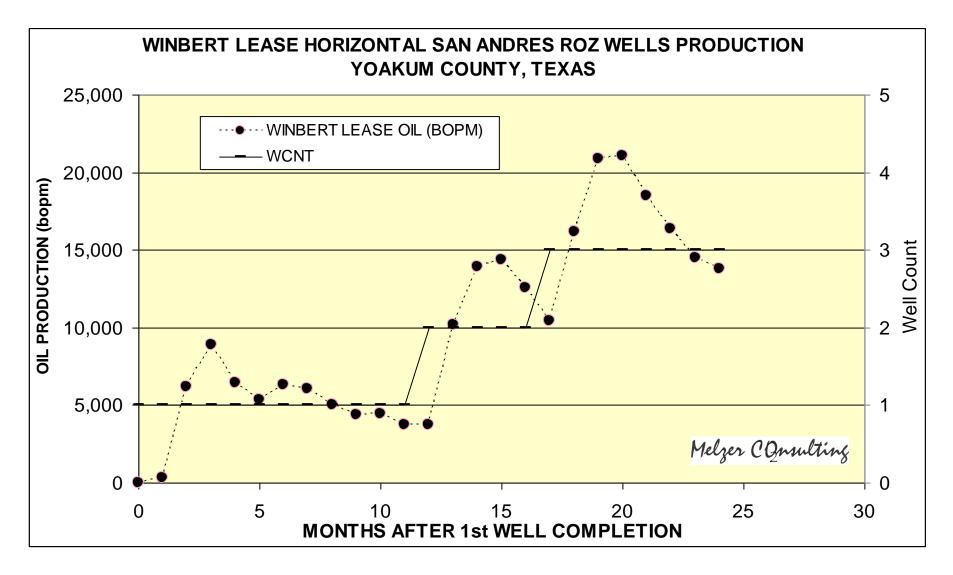
Reservoir Depressuring Stats

DUROZ WELLS: YOAKUM CO., TX										
	Well	Initial Intake Pressure	First Oil Cut Intake Pressure	Lateral Length	Day	Pressure	Oil Production on 4/9/15	Days Until First Production	Cumulative Oil Production	Ave BOPD since 1st Oil
1	What A Melon 1H	1745	1225	1 mile	393	340	182	26	61,004	166.2
2	Well #2	2120	1315	1 mile	378	455	136	31	70,022	201.8
3	Well #3	1700	1270	1 mile	195	735	386	6	38,357	202.9
4	Well #4	1975	1090	1.5 mile	170	510	430	32	43,189	313.0
5	Well #5	2030	1200	1 mile	151	205	200	22	16,305	126.4
6	Well #6	2225	1150	1 mile	122	495	291	32	21,898	243.3
7	Well #7	2053	1260	1 mile	83	515	319	25	13,230	228.1
8	Well #8	2110	1635	1 mile	42	1195	79	30	1,706	142.2
9	Well #9	1820	No Oil Cut Yet	1.5 mile	20	1585	0			
10	Well #10	2040	No Oil Cut Yet	1.5 mile	20	1180	0			
11	Well #11	1750	No Oil Cut Yet	1 mile	1	1665	0			



Analog Well Performance (2) (Analog {1-mile} DUROZ Case History)


- A Good Average Well is also the oldest of the upper ROZ wells (Winbert 1-H), we'll call our analog horizontal San Andres ROZ well in Yoakum County, Texas
- Long Term Well Decline Analysis Complicated by the Addition of Two Wells to the Lease


Winbert (Brahaney Area) DUROZ Case History Yoakum County, Texas

The Produced Water Volumes are Very Large

Winbert Lease Update

The DUROZ Play Summary

DEOR/DUROZ Review {1}

- The DEOR/DUROZ Play, although very new, takes advantage of the new understanding of the widespread ROZ Fairways, high S_{orw} Values, and excellent reservoir properties of the Permian Basin San Andres porosity intervals
- The Play also takes advantage of the technological advances in horizontal drilling and completions
- The two technologies converge to make a very commercial horizontal play even at \$50/bbl oil pricing if water costs can be contained

DEOR/DUROZ Review (Cont'd)

- The Bottom of the Prospective ROZ may not be a lithological change bringing with it hydrofracturing risks or it can be a wackestone (tight, shaley dolomite) providing an excellent containment (bottom) for the hydrofracs (~ROZ thickness of 100')
- DUROZ Zones can be stacked
- This play will have "sweetspots" like other resource plays but could be of enormous extent throughout the San Andres Shelf Regions of the PB

DEOR/DUROZ Summary (Cont'd)

- This Area of Western Yoakum County is Laced with Dry Holes with an Occasional Shingle of Mobile Oil at the Top of the ROZ – a Classic Indicator of ROZ Greenfields
- Conventional Thought Keeps Saying that it has to be Mobile Oil that is Being Produced (Tight Oil)
- But with 30-40% S_{orw} Values in the ROZ Greenfields, there are Plenty of Reasons to Believe it is Residual Oil that is being Produced (i.e., Camp #3 – see Slide #16)

With all of this as the Premise...

What about ROZ Scalability to Other Places?

For Both (CO₂) EOR and for DEOR/DUROZ

Comments on Scalability to Other Areas, Other Basins in the U.S. and Abroad

- San Andres ROZ
- Other ROZs in the PB (Grayburg, Glorieta/Yeso, Clearfork, Abo)
- Hunton Dewatering Play (OK)
- Big Horn Basin (WY)
- Powder River Basin (WY)?
- Red River ROZ Play (Williston Basin)
- Others?

For more information and a complete set of slides – see 2015 CO_2 Conference Results on www.CO2Conference.net

