

Permian CCS Center

Carbon Capture & Storage Technology

Southwest Petroleum Short Course April 20 – 21, 2011 Robert D. Kiker Applied Petroleum Technology Academy

TOPIC OUTLINE

- What is the Permian Basin Carbon Capture and Storage Training Center?
- Training Media
- Other CCS Training Centers
- Changing Focus
- Operations Workshop Highlights

About Permian CCS Center

- World class training in carbon capture and storage (and EOR) for and by industry professionals, focusing on individuals in the Permian Basin but through online presence available to individuals throughout the U.S. and the world
- Stimulated by a grant for the National Energy Technology Laboratory of the DOE and the American Recovery and Reinvestment Act of 2009
- Efforts guided by and Industry Advisory Board

Permian Basin CCS Approach

- By and For Industry Industry organizations instructing industry professionals
- Targeted audience of wide range of energy professionals potentially involved in CCS, engineers, geoscientists, regulators, academia
- Its all about the money: for the individuals to advance, for PBCCS to become self-sustaining

Three World Class Organizations

Petroleum Technology Transfer Council Tech Transfer, Workshops, Newsletter, Tech Alerts

American Association of Petroleum Geologists

37,000 Members, Publications and Conferences Distance Learning

Applied Petroleum Technology Academy CO₂ Course, CO₂ Conference

Applied Petroleum Technology Academy

 The Applied Petroleum Technology Academy ("APTA") is a nonprofit organization created to teach energy companies how to apply cost-effective technology in order to extend the lives of aging oil and gas fields around the world. APTA's mission statement is simple:

> "To provide practical training of oilfield practices in a mature oilfield environment emphasizing cost savings with ample opportunity for field visitation."

- Headquartered in Midland, Texas in the heart of the Permian Basin
 - APTA can provide access to hands-on practical training based on decades of CO₂ experience. Curricula can be customized to meet the specific needs of clients with respect to both their levels of experience and to the types of fields they are dealing with. APTA's curricula are designed to cover all aspects of petroleum production.

Petroleum Technology Transfer Council

- PTTC provides a forum for technology transfer and learning
- The Petroleum Technology Transfer Council (PTTC) is a national not-for-profit organization led by an independent Board of Directors and managed by the American Association of Petroleum Geologists.
 PTTC was established to provide a forum for transfer of technology and best-practices within the producer community. Local Producer Advisory Groups ensure that PTTC activities in a particular region address the technology needs of producers in that area.
- PTTC is a partnership to connect independents with the technology and knowledge to safely and responsibly develop the nation's CCS and oil and gas resources. As such, it is an important part of America's energy solution

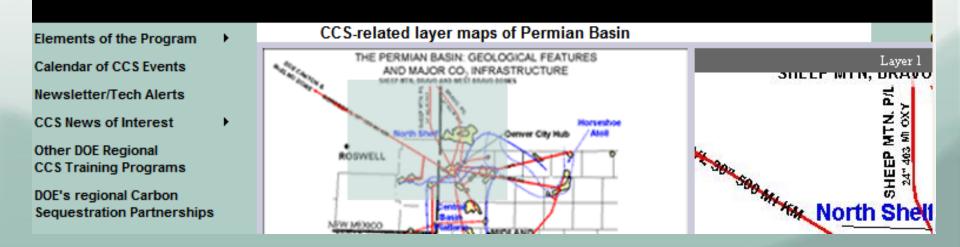
American Association of Petroleum Geologists

- Founded in 1917, the American Association of Petroleum Geologists is currently the world's largest professional geological society.
- The membership of AAPG includes geologists, geophysicists, CEOs, managers, consultants, students and academicians. The purpose of the organization is to foster scientific research, advance the science of geology, promote technology and inspire high professional conduct.

Major Elements of Permian Basin CCS

- Week-Long Short Course (APTA) Industry Professionals instructing Industry Professionals
- Series of One-Day Workshops and Webinars (PTTC)
- E-Certificate (AAPG) and free Open Courseware
- Augmented by <u>www.permianbasinccs.org</u>, Newsletter, e-alert

www.permianbasinccs.org



CARBON CAPTURE & STORAGE TECHNOLOGY

"World Class CCS Training for & by Industry Professionals"

Imparting the needed skill sets to realize CCS opportunities

Developed & Delivered by PTTC, APTA & AAPG with Grant Funding from the American Recovery and Reinvestment Act of 2009 through DOE

RESIDUAL OIL ZONES

BY STEVE MELZER

ur first issue described pervasively dolomitized intervals (PDI) in the Permian Basin (PB). PDIs stem from a slow lateral invasion of water from outcrops on the western side of the PB that pervasively altered the limestone to dolomite resulting in a laterally continuous, moderately porous and permeable zone that provides a large potential

What does a Residual Oil Zone (ROZ) look like?

Research is documenting the evidence for and characteristics of ROZs below the major San Andres reservoirs in the Permian Basin (PB). There is significant anecdotal evidence for the presence of ROZs from exploration wells in "goat pasture" both adjacent to, and at distance BY BOB TRENTHAM, UTPB/CEED

Characteristics. Rock properties include: the presence of sulfur crystals associated with gypsum in the swept interval (ROZ) of carbonate reservoirs; evaporites that are dissolved in the ROZ or altered in the lower part of the main pay; sample shows of oil and/or gas (odor, cut, fluorescence in

Permian CCS Workshops

Extended Length Workshop (4 ¹/₂ days) contains most of the aggregate material found in the 1 day works listed below

- Overview of the Elements of CCS CCS (and CO₂ Flooding in the Permian Basin)
- Site Selection and Operations The Reservoir Characterization, Modeling and Monitoring
- CO₂ Flood Operations & Surface Facilities CO₂ Sources and Capture Technology
- Business of CO₂ Flooding and Moving Forward with CCS

Webinars – Slides and Voice

- The Promise and Performance of Next Generation CO₂-EOR by Advanced Resources International with Vello Kuuskraa and Michael Godec
- CCS (and CO₂ Flooding) in the Permian Basin An Overview of the Science and Training Program with Steve Melzer and Dwight Rychel
- CCS in the Permian Basin, The Reservoir Characterization, Modeling and Monitoring with Steve Melzer and Bob Trentham

Free Open Courseware - AAPG

- Carbon Capture and Sequestration: An Introduction
- Geological Models in CO₂ Separation
- CO₂ Supply, Demand: Legal and Regulatory Issues
- CO₂ Separation, Compression, Transportation and Marketing

Permian CCS e-Cert Program

- Online program
- Proceed at your own pace
- Certification after demonstrated learning
- Similar topics as short courses
- Structure the same as recent AAPG Solar Energy Program

Other CCS Training Organizations

PERMIAN CCS CENTER

Midwest Geological Sequestration Consortium – Sequestration Training and Education Center – MGSC-STTC (<u>http://sequestration.org/step/index.html</u>) by Illinois State Geological Survey.

Carbon Capture and Storage Training (CCST) Northwest – Carbon Tech Alliance (<u>www.carbontechalliance.org</u>) by Environmental Outreach and Stewardship Alliance.

Southwestern United States CO_2 Sequestration Training Center – CO2TC (New Mexico Institute of Mining and Technology) <u>www.southwestcarbonpartnership.org/default.aspx</u>.

Southeast Regional CO₂ Sequestration Technology Training Program – SECARB-Ed (<u>www.sseb.org/secarb-ed.php</u>) by Southern States Energy Board (<u>www.sseb.org</u>).

Sequestration Training, Outreach, Research & Education – STORE (<u>www.storeco2now.com</u>) by University of Texas at Austin..

Wyoming CCS Technology Institute – WCTI (<u>http://wcti.uwyo.edu</u>) by University of Wyoming.

Permian Basin CCS Training Center

What Has Worked

- Highly Qualified and Responsive Advisory Board
- Newsletter and e-Alert Informative, hundreds of readers
- Broad Encompassing Curriculum
- Structure in place for first two short Courses and Webinars

Permian Basin CCS Training Center

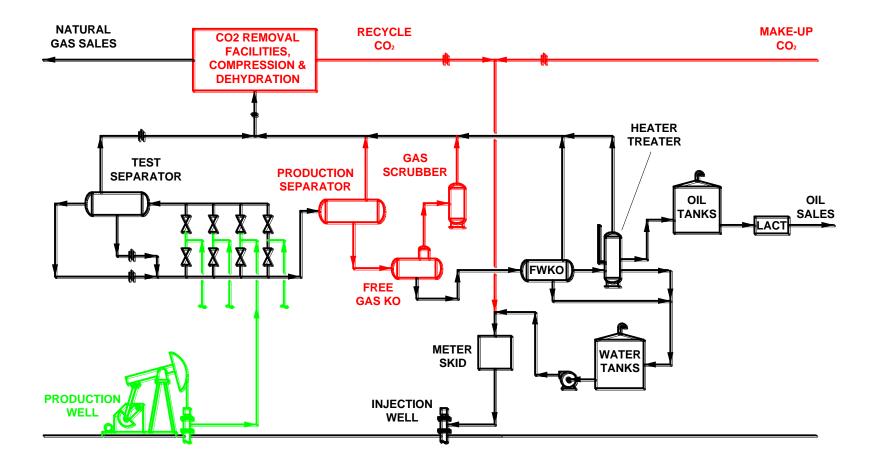
Challenges

- Lack of congressional action regarding climate control providing incentives to capture and sequester CO₂ causing otherwise interested parties to lose interest
- Targeted Oil and Gas Professionals in Permian Basin have skills in place for sequestration via CO₂ EOR and little interest in geological storage in saline formations
- Consequently low interest in early produced workshops and webinars

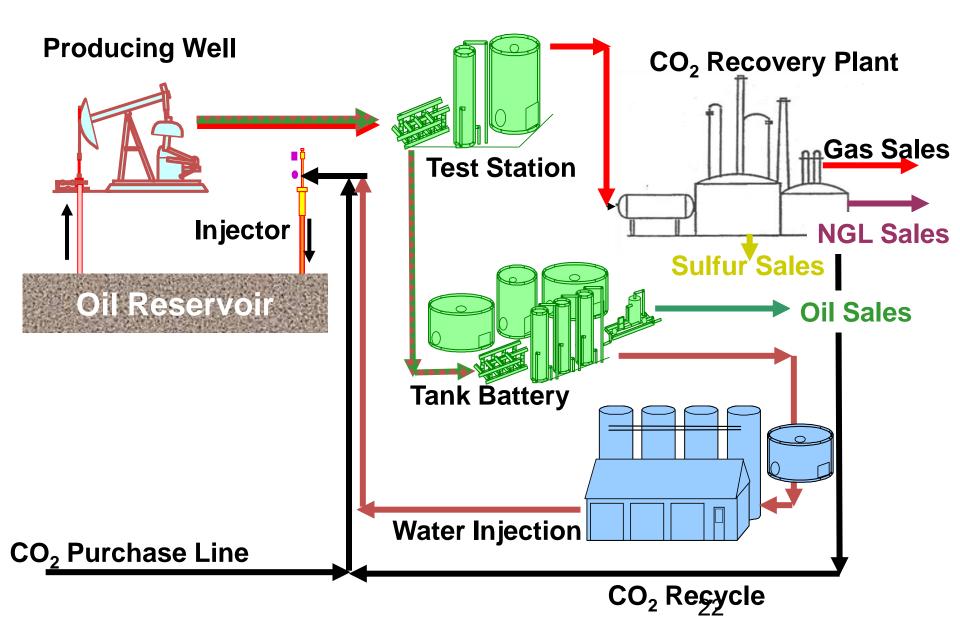
Permian Basin CCS Training Center

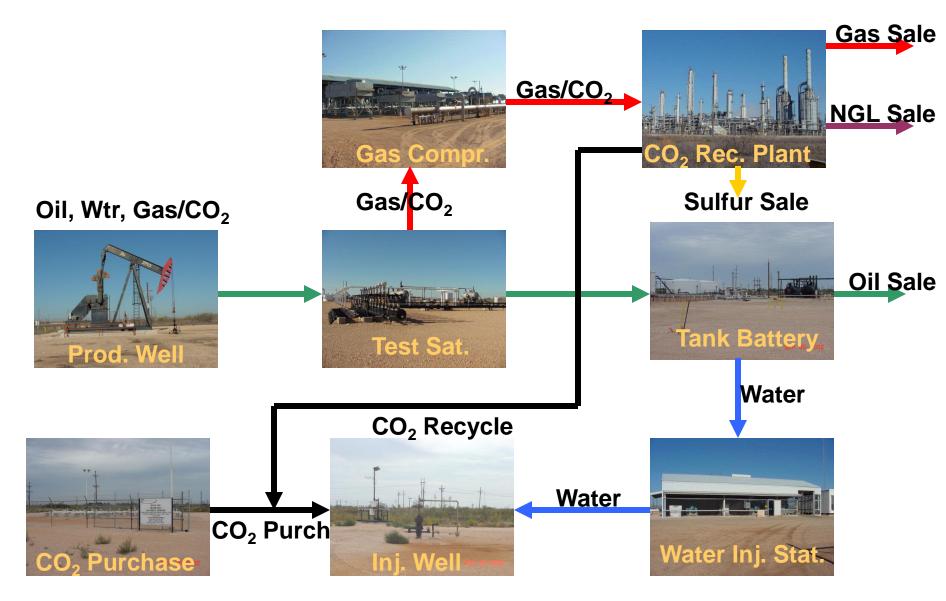
Where We Are Today

- Broadened targeted audience to include regulators, environmentalists, scientists, electric generating industry and other CCS stakeholders
- Slowed the pace of delivery somewhat until the audience is broadened and some hope of legislation emerges
- Focused more on electronic delivery, versus the local workshops



Operations Workshop Topics


- CO₂ Flood Operations
- Wellsite Surface Equipment
- Downhole Design and Considerations
- Operational Features Peculiar to CO₂ Injection Projects
- Examples of Operator Differences
- Review of Anthropogenic Sources and Existing and Future Capture Technologies
- Dehydration Processes
- Compression Facilities
- Sulfur Removal
- Recycle Plants


Typical CO₂ / Waterflood Operation

Field Flow Diagram

Field Flow Diagram

Surface Equipment

Design Considerations

Production Equipment/Vessels Headers Separators-2 & 3 phase FWKO FGKO Tanks Oil & Water Vapor Recovery Water Injection Equipment

Production Equipment - Vessels

- Production Separator
 - 2-phase
 - Eliminates large gas volumes at test site
 - Disperses slugs and surges
- Free Gas Knock Out
 - 2-phase
 - Eliminates large gas volumes
 - Regulates fluid delivery to FWKO

Production Equipment - Vessels

- Free Water Knock Out
 - 2-phase (fluid packed), or
 - 3-phase
- Heater-Treater
 - 3-phase
 - Vertical or horizontal
 - Oil/water separation
- Gas Scrubber
 - 2-phase
 - Separates carry over fluids

Production Equipment - Vessels

- Design Considerations
 - Operating pressure
 - Operating temperature
 - Production flow rates throughout life of project
- Materials
 - Internally coated carbon steel

Production Equipment - Tanks

- Working Tank
- LACT Tanks
 - Circulation system
 - Agitators (mixers)
- Design Considerations
 - Daily production rates
 - Operator response time
- Materials
 - Carbon steel
 - Partial internal coating

Production Equipment - Vapor Recovery

- Design Considerations
 - Gas volumes
 - Oxygen
 - Regulatory compliance
- Materials
 - Vessels: CS hot side / SS cold side
 - Piping & Valves: CS hot side / SS cold side

Downhole Design Considerations

Tubulars- Both Production and Injection Wellbores Metallurgy for Pumps and Packers Artificial Lift

C0₂ Operations Features/Operator Differences


Review operational feature differences and similarities in regard to production practices including artificial lift.

Review operational differences in the handling of the produced gas stream for the flood injection.

- Reinjection of associated gas produced (Often Referred to as Blood, Guts, and Feathers {BGF})
 - Compression and usually dehydration
- Reinjection of associated gas stream coupled with C_4 + extraction for sales
 - Compression, dehydration, rough hydrocarbon cut, CO₂ removal
- Processing of the associated gas stream into C_2 + for sales and CO_2 for reinjection
 - Compression, dehydration, hydrocarbon recovery (distillation, CO₂ membranes, etc.)

Anthropogenic Sources and Separation Technologies

North American CO₂ Stationary Sources with Geologic Basins

CO2 Sources

- Agricultural Processing
- Cement Plants
- Electricity Generation
- Ethanol Plants
- Fertilizer
- Industrial
- Petroleum and Natural Gas
 Processing
- Refineries/Chemical
- Unclassified

Yearly CO2 Release (Metric Tons)

- 0 250,000
- 250,001 500,000
- 500,001 750,000
- 750,001 10,000,000
- 10,000,001 18,000,000
- Geologic Basins

Underson in This and with properties in the properties of the SM section of the suggesting of the Under Small Section Section Networks for Under Status Undersonality and any suggesting the SM section of the SM section Section Section Section Section of the SM section Se

turistand

Industrial Sources of CO2

PERM	IAN CCS CENTER Source	Flue Gas % CO2	CO2 Capture/yr (MM tons)	CO2 MMSCF/D
	 Coal Power Plant¹ 	13.3	4.6	222
	 Natural Gas Turbine² 	4.0	1.5	72
	 Cement Plant³ 	14-33	1.2	56
	 Steel Mill⁴ 	15-20	3.85	184
	 Ammonia Plant⁵ 	98+	0.62	30
	 Hydrogen Plant⁶ 	95+	0.50	24
	 Ethylene Oxide⁷ 	98+	0.18	9
	 Ethanol Plant⁸ 	98+	0.14	7

1- 546 MW(net) Supercritical Plant @ 85% Capacity Factor, 90% Capture

2 - 482 MW (net) Nat Gas Combined Cycle Plant @ 85% Capacity Factor, 90% Capture

- 3 1.1 MM ton/yr cement plant @ 92% Capacity Factor and 80% Capture
- 4 Oil & Gas Journal, 10-4-2010, p.108: Original Source (IFP)
- 5 1500 ton/day NH3 plant base on steam reforming of methane, 95% Capacity Factor
- 6 Based on 100 MMSCF/D hydrogen production from SMR @ 95% Capacity Factor
- 7 350,000 ton/ye Ethylene Oxide plant
- 8 50 MM gallon/year ethanol plant

Blue Strategies, 2010

CO2

APTA

DSA

AAPG

EOR

PTTC

CO₂ Capture Technologies

Pre-Combustion IGCC – FutureGen Membranes **Oxy-Combustion and Chemical Looping** Pure Oxygen vs. Air in Boiler Post Combustion Adsorption Solvent Integrated Environmental Control Model – <u>WWW.iecm-online.com</u>

Discuss and Evaluate all CO₂ Capture Processes

CO2 Capture Demonstration Projects

Coal Fired Power Plants

Performer, Location, Capture Technology ,Capture Rate (tonnes/year) , Start Date *Pre-Combustion Capture*

Summit Texas Clean EnergyOdessa, TXSelexol3,000,0002014Southern CompanyKemper County, MSSelexol2,000,0002014Hydrogen EnergyCalifornia Kern County, CARectisol2,000,0002016Post-Combustion Capture

Basin ElectricBeulah, NDAmine5,00,000 - 1,000,0002014NRG EnergyThompson, TXAmine~500,0002015American Electric PowerNew Haven, WVChilled Ammonia1,500,0002015201520152015

Oxy-Combustion Capture

FutureGen 2.0Meredosia, ILOxy-Combustion1,000,0002015

Gas Plant Processing

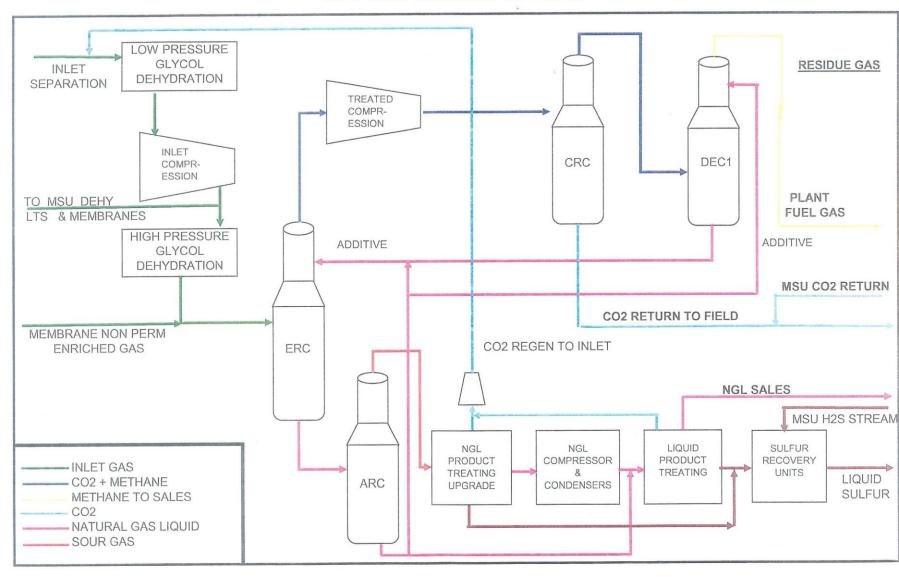
Dehydration/Compression Sulfur Removal/Recycle Plants

Gas Handling - Dehydration

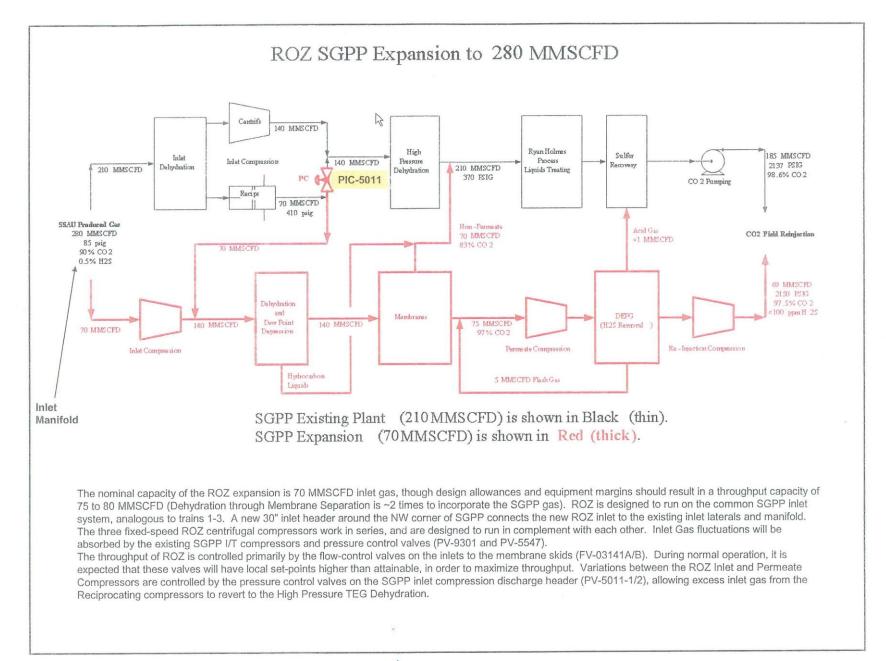
- Design Considerations
 - Is dehydration necessary?
 - Wet CO_2 flow rates
 - Operating pressure
 - Operating temperature
- Materials
 - Contactor: Stainless steel
 - Regeneration Skid: Carbon steel and stainless steel

Gas Handling - Compression

- CO₂ compression differs significantly from natural gas compression
 - Materials
 - Compressor Speed
 - Drivers
 - Cooler Design



Hess Seminole Plant Schematic


HESS CORPORATION U. S. EXPLORATION AND PRODUCTION

SEMINOLE GAS PROCESSING PLANT

SGPP GAS PROCESSING SCHEMATIC

Hess Seminole Plant Expansion Schematic

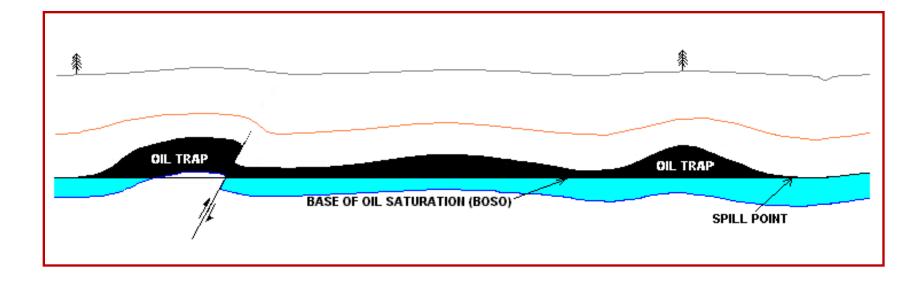
ROZ (Residual Oil Zone Development)

The following slides have been added to report a new development that the Permian Basin CO_2 APTA group has been actively involved in.

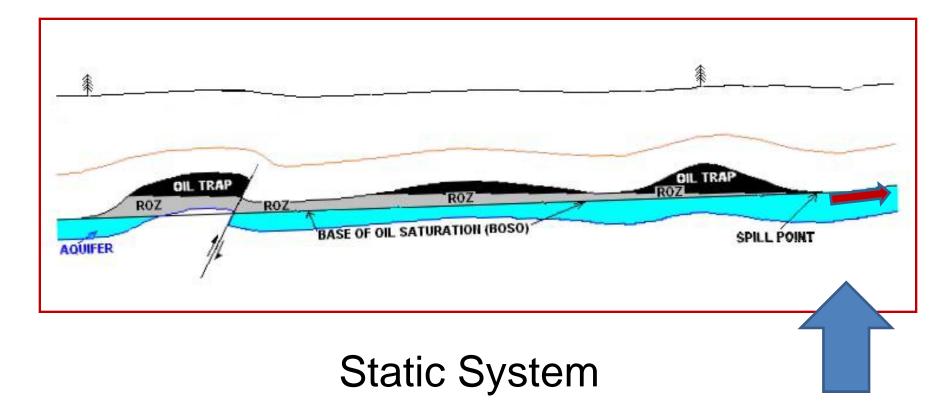
Further information on the research and actual demonstration work that is going on in the ROZ zones is available at the website <u>http://www.residualoilzones.com</u>

Origins of Residual Oil Zones and Mother Nature's Waterflood

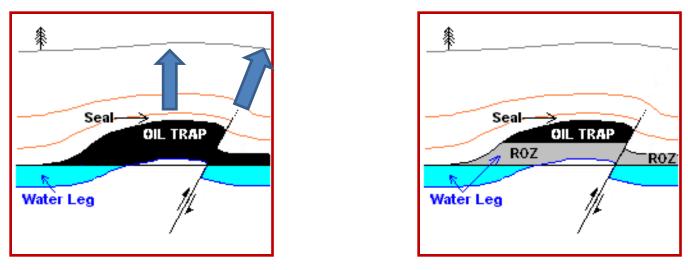
Background and Understanding


First basinwide study of Residual Oil Zones (ROZ's) in the upper Permian carbonates in the basin.

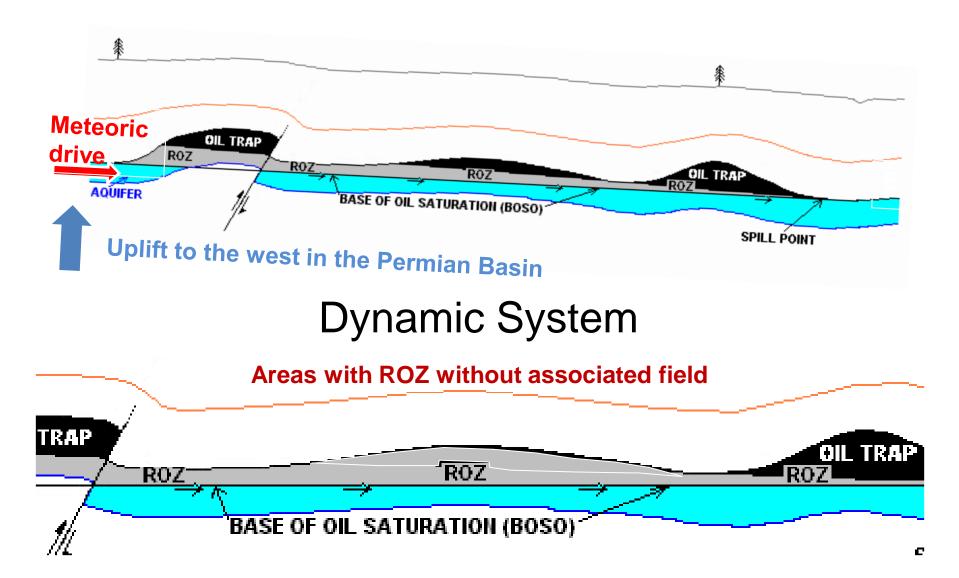
- It is supported by the Research Partnership to Secure Energy for America (RPSEA) and industry partners.
- ROZ's have historically been interpreted as being long Transition Zones. Although the upper portions of TZ's/ROZ's have long been assumed to contribute to production in some fields, until recently their potential as a CO2 recovery target has not been exploited.
- Development wells, scheduled to test deeper horizons, have often been drilled through zones with good shows in samples, porosity and oil saturation in core, and where the zones are calculated to be oil productive. These wells, however, have a poor record of successful completions.


Where we are today

- ROZ's appear to be common in Leonardian and Guadalupian carbonates on the Central Basin Platform and Northwest Shelf.
- Exploitation of thick ROZ's associated with many of the major San Andres fields has begun with CO2 projects underway at Wasson, Seminole, Vacuum, Means, Goldsmith, and Hanford Fields, with others planned.
- Production from ROZ's and anecdotal evidence from exploration wells, coupled with the theory/model of the development of Residual Oil Zones (ROZ's), has led to the belief that there are potentially billions of barrels of additional producible tertiary reserves in the Permian Basin and elsewhere.

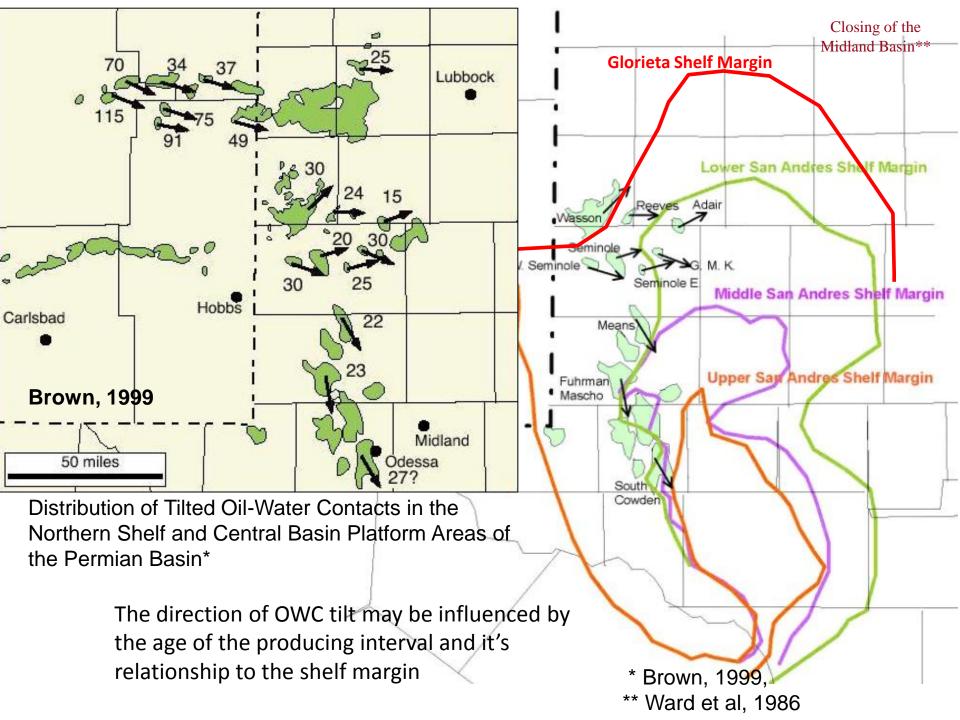

Original Oil Accumulation Under Static Aquifer Conditions (A Hypothetical Example)

TYPE 1. Original Accumulation Subject to a Eastward Regional Tilt & Forming a ROZ. The new O/W contact is horizontal The base of the ROZ is tilted Oil would have migrated out of the basin.

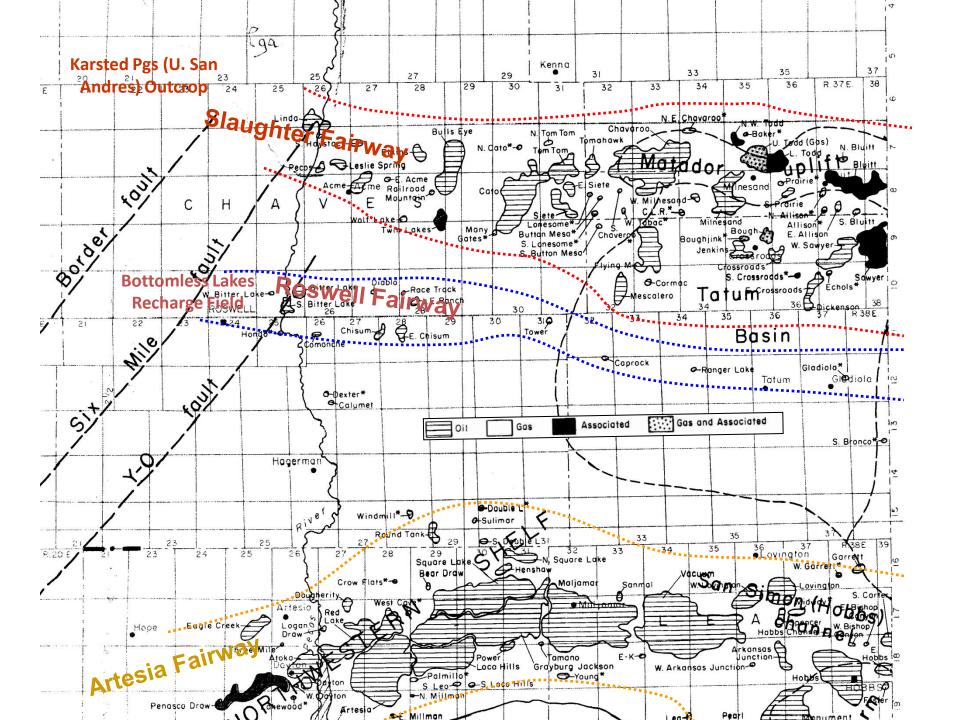


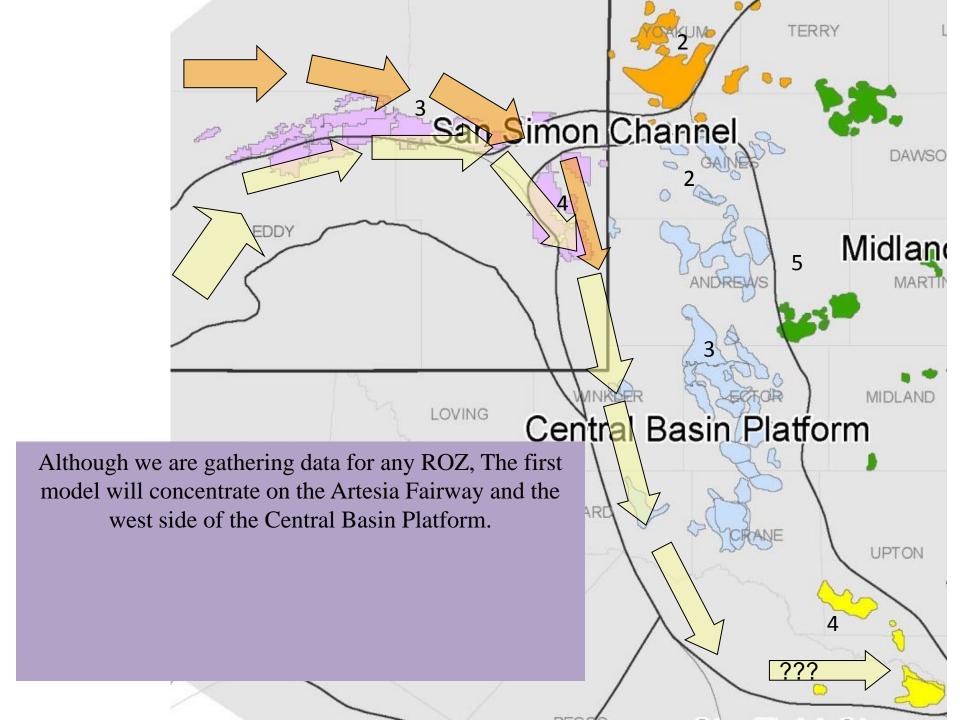
TYPE 2. Original Accumulation with a Breached, then Repaired, Seal, forming a ROZ/TZ.
A horizontal O/W contact on the main pay and the ROZ.
May also "de-gas" the reservoir.
Present in the Permian Basin.

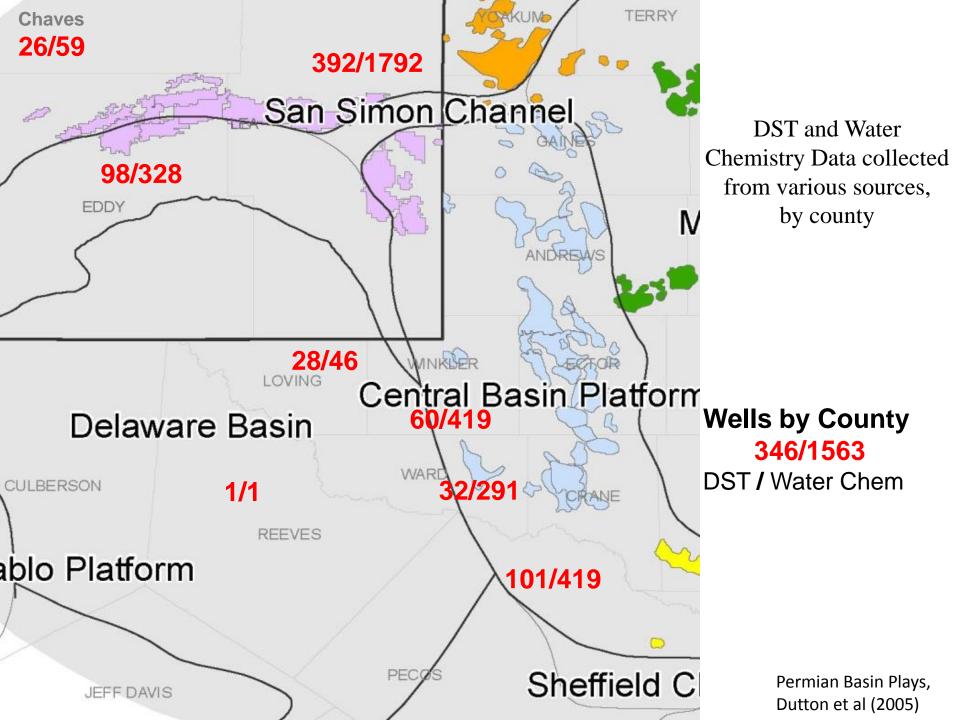
Static System


TYPE 3. Change in Hydrodynamic Conditions, Sweep of the lower part of the Oil Column and Development of a Residual Oil Zone. Oil/Water Contact is Tilted Base of the ROZ locally almost flat, regionally tilted.

Attributes of the ROZ Types

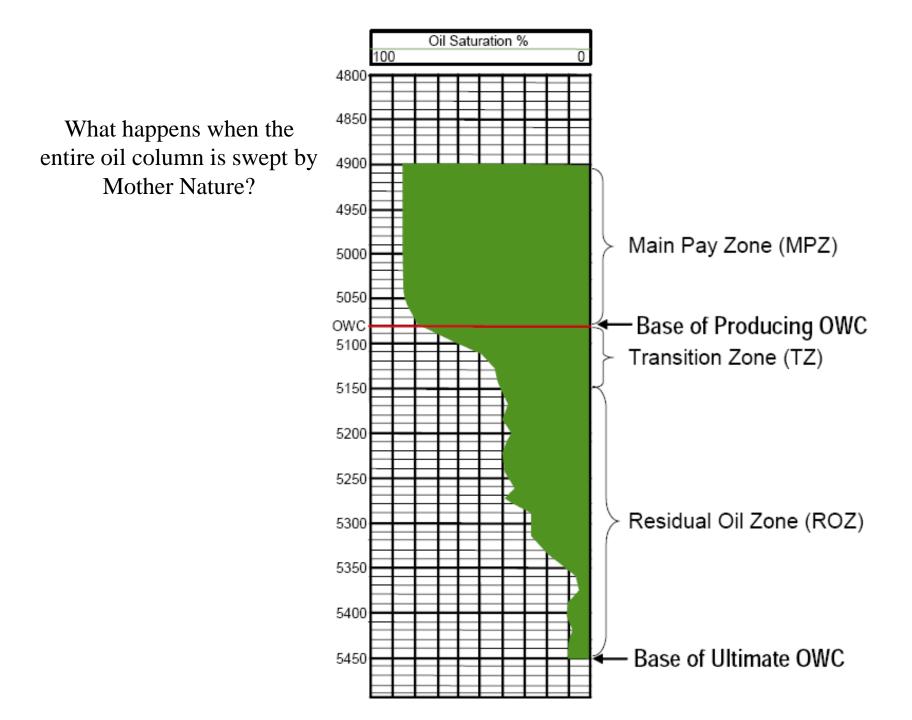

ROZ TYPE	Oil-Water Contact	Base of Oil Saturation	Other Characteristics
Regional Tilt (1)	Horizontal	Tilted	Wedge with thin side Downdip
Breached Seal and Reaccumulation (2)	Horizontal	Horizontal	Stratified Tar Mats, Anomolously Low GOR
Hydrodynamic Tilt (3)	Tilted	Horizontal	Wedge with thin side in Direction of Flow
			(to Spill Point)

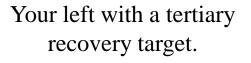

First, Let's Look evidence for OWC Tilt

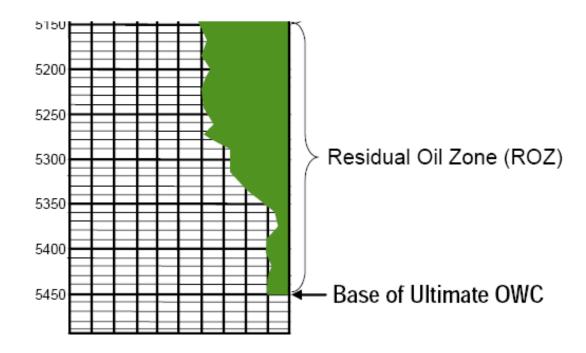


Tilted Oil Water Contacts

- New Axiom " If you have a tilted oil/water contact in the San Andres, you have a ROZ.
- If you have an ROZ.....find a contract for CO₂.
- Be prepared for big hug from royalty owner.

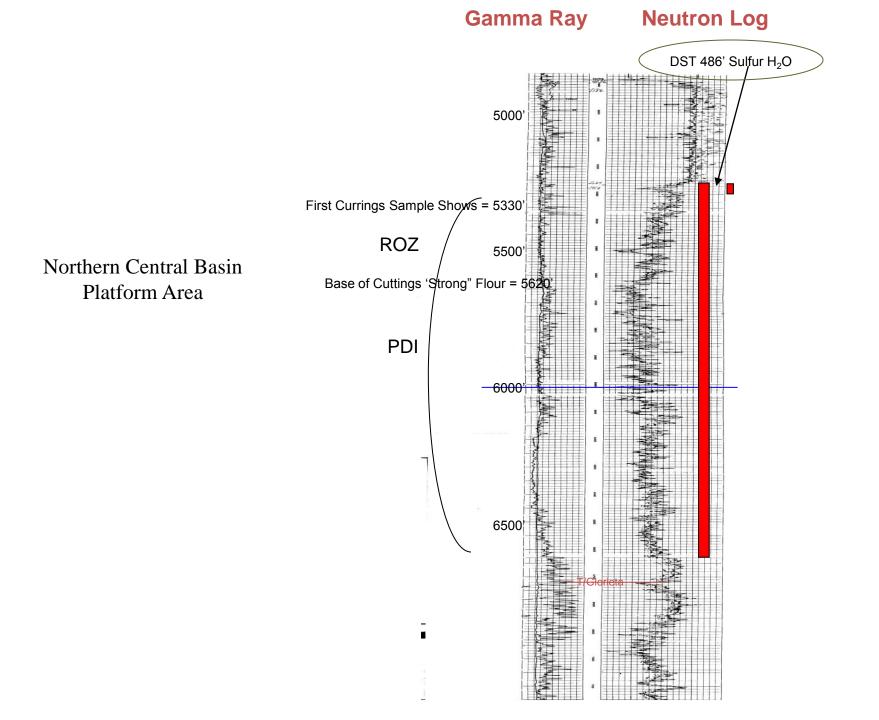


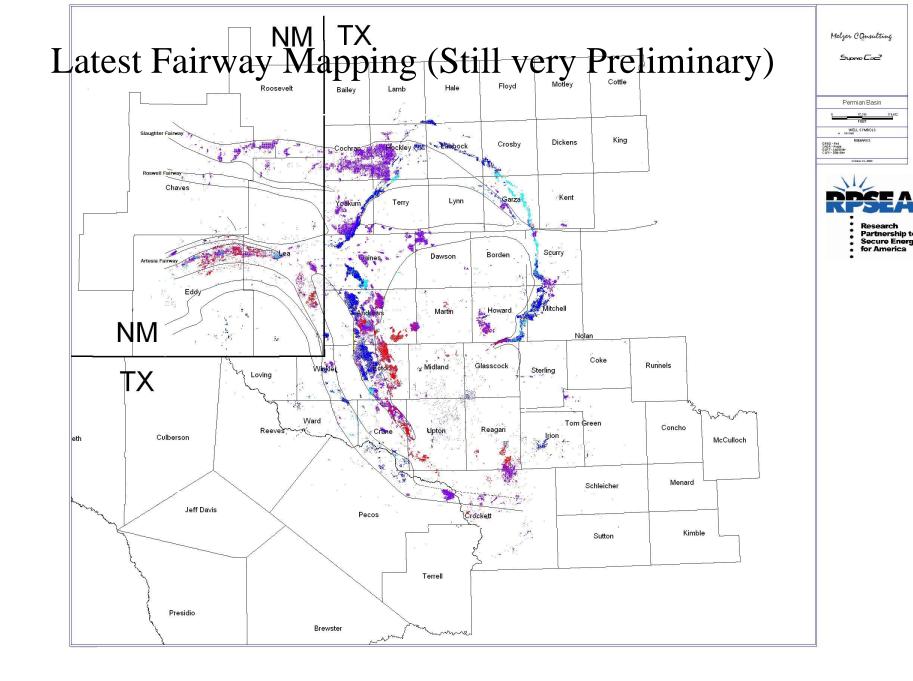




The new Residual Oil Zone Paradigms

- Large intervals and areas have been swept by "Mother Natures Waterflood" which occurred post/syn oil emplacement.
- ROZ's have the same saturation characteristics as mature waterfloods in the swept intervals.
- ROZ's often are interpreted/calculated as producible in Exploration Wells, and Primary and Secondary Production Environments:
 - Good Odor, Cut, Fluorescence, and Gas in samples
 - 20 40 % oil saturations in core
 - Calculate as oil productive on logs
- ROZ's produce high percentage of water on DST's or completions, but not a "deal killer".
- ROZ's originally there intervals were there were significant thicknesses (50 to 300') of producible hydrocarbons in producing fields AND outside the present limits of producing fields.
- This "faux-productive" appearance of ROZ's is presently found both beneath producing fields and in areas where there is no, or a minimum, producible oil column.





What We Are Learning About the Characteristics of ROZs

Mud log and Cutting Shows, Sulfur and Sulfur Water, Leached Fractures, Pervasive Dolomitization, Bow Shape Logs, Comparisons to MPZs, Nature of Reservoir Fluids, etc.

NINE ROZ PROJECTS ARE ACTIVE

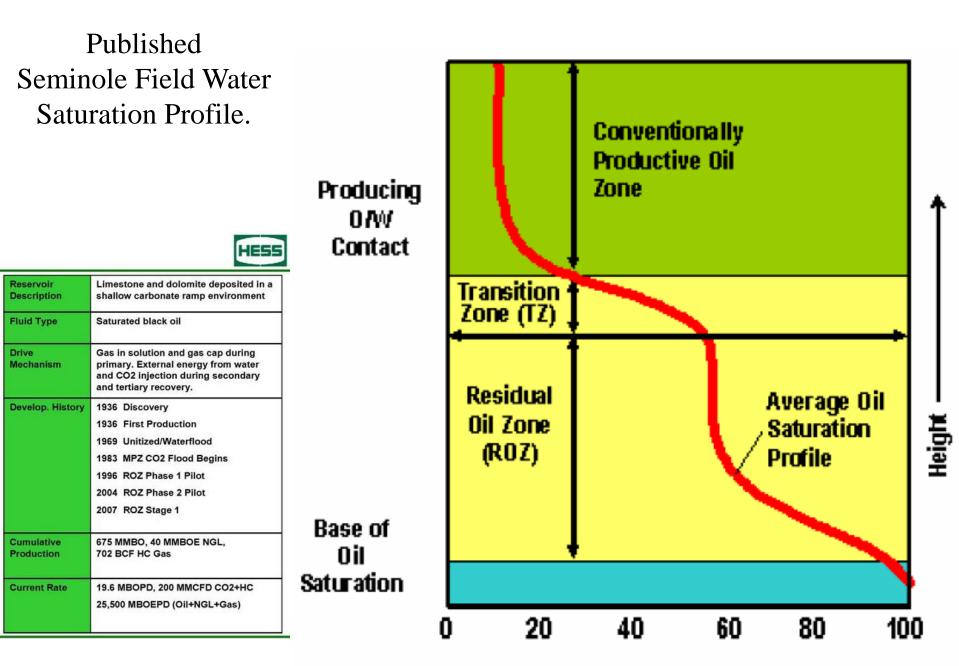

(ALL IN PERMIAN BASIN TO DATE)

TABLE 3 - ROZ CO2 EOR PROJECTS Melzer COnsulting					Confidential Information										
	Type and	0			Top MPZ Depth,	:	Form-	MPZ Start	ROZ Start		Gross MPZ	Gross ROZ	Net ROZ	Area,	Satur.
	operator	Field	State	County	ft	Pay zone	ation	date	date	Strategy			Perforated		% start
	Active CO ₂ mis	scible													
1	Chevron	Vacuum San Andres Grayburg Unit	NM	Lea Co.	4,550	San Andres/Grayburg	Dolo.	2007	2007	Commingle			150		35
2	Fasken	Hanford	Tex.	Gaines	5,500	San Andres	Dolo.	7/86	8/09	Deepen				1,120	
3	Hess	Seminole Unit-ROZ Phase 1	Tex.	Gaines	5,500	San Andres	Dolo.	7/83	7/96	Deepen	160	250	200	500	32
4	Hess	Seminole Unit-ROZ Phase 2	Tex.	Gaines	5,500	San Andres	Dolo.	7/83	4/04	Deepen (Dedicated*)	160	250	200	480	32
5	Hess	Seminole Unit-ROZ Stage 1 Full Field Dev	Tex.	Gaines	5,500	San Andres	Dolo.	7/83	10/07	Deepen	160	250	200	2,320	32
6	Legado	Goldsmith-Landreth Unit	Tex.	Ector	4,200	San Andres	Dolo.	8/09	8/09	Commingle	80	175	175	80	
7	Occidental	Wasson Bennett Ranch Unit	Tex.	Yoakum	5,250	San Andres	Dolo.	6/95	2000	Commingle	100	78	150		
8	Occidental	Wasson Denver Unit	Tex.	Yoakum	5,200	San Andres	Dolo.	4/83	1995**	Deepen	230	230	150	1000	
9	Occidental	Wasson ODC	Tex.	& Gaines	5,200	San Andres	Dolo.	11/84	?	Deepen			150		
	Planned CO ₂ r	niscible													
10	Conoco	East Vacuum (GSA) Unit	NM	Lea Co.	4,550	San Andres/Grayburg	Dolo.	Feb-81	* 2011	Deepen			150?		35?
11	SandRidge Ter	t George Allen	ТХ	Gaines	-	San Andres	Dolo.	N/A	2010	Commingle			?		
	* Dedicated ROZ Pilot ** Initial Dev called Transition Zone Sweetspot, now followed by Phases 1-4														

References: Oil & Gas Journal Annual Production Report, Apr 19, 2010, and Melzer Consulting (May 2010)

Our ROZ Conclusions to Date

- Intervals Below the OWC with Shows Are More Appropriately Viewed as Residual Oil Zones and Owe Their Origins to a Variety of Causes Beyond Transition Zones
- PB ROZ Prevalent Type is Type 3: Laterally Flushed
- ROZs Can be Very Thick and Contain Huge Amounts of Oil
- New Paradigm: "Look at Intervals with 'Shows' Below the OWC as Targets for EOR" and, also, Look Between Fields
- Considerably More Research is Needed; We Aren't Starting Over but Because These Targets are Present, Very Large and Commercial, There Are a Lot of New Concepts to Grasp

Water Saturation (%)

Calibrating the Oil Recovery Models and EstimatingTechnically

Recoverable ROZ Oil – MPZ and TZ/ROZ Oil in

56 fields in five major Permian Basin of plays that have potential for significant TZ/ROZ resources were identified by ARI.

TZ/ROZ OOIP in these 56 fields is estimated to be 30.7 Billion Barrels.

Field/Unit	MPZ OOIP (BB)	TZ/ROZ OOIP (BB)	No. of Fields	No. of MPZ Fields with CO2- EOR Projects	No. of Fields with TZ/ROZ CO ₂ - EOR Projects
1. Northern Shelf Permian Basin (San Andres)	13.0	13.2	13	5	1
2. North Central Basin Platform (San Andres/Grayburg)	2.9	2.6	6	2	1
3. South Central Basin Platform (San Andres/Grayburg)	9.9	7.9	16	5	0
4. Horseshoe Atoll (Canyon)	5.4	2.9	10	4	2
5. East New Mexico (San Andres)	2.3	4.1	11	2	0
Total	33.5	30.7	56	18	4

Conclusions

- Absent meaningful climate control legislation and breakthrough on the cost of separation, interest in CCS is waning
- The market is oversaturated in CCS training offerings
- CCS training is clearly price sensitive
- The CCS training market is demanding more online, self-paced, less expensive alternatives to traditional face to face course work
- CO₂ EOR as storage is an important aspect of CCS

Permian Basin CCS Training Center

Questions?

Robert D. Kiker

rdkikerinc@geospectrum.com

432.552.3432