

First Ever ROZ (Residual Oil Zone) SYMPOSIUM

MM

Midland College Advanced Technology Center October 22, 2009

Symposium Objectives

- Describe the Progress of Understanding the Origins and Distributions of ROZs in the PB
- Show Some Case Histories
- 'Flip the Paradigm' from Zones to be Avoided to Intervals of Opportunity
- Potential Magnitude of the Prize
- Gather New Anecdotal Evidence by Learning from the Audience (Breakout Sessions)
- Begin to Chart a Future for the Effort

Welcome and Introductions

- Steve and Bob, Edith
- Chevron and Legado
- The Research Team:
 - Phil, Arcadis (Dave and Steve), Saswati, Jimmy, Bob K., Hoxie
- Valued Contributors
 Bill, Blake, Lon
- And you!!!

BACKGROUND DISCUSSION

The Origins of Permian Basin Residual Oil Zones

- 'Piecing in' the Science
- Categories of Anecdotal Evidence
 - Sources of Water (caverns and karst)
 - Discharge Path Concepts
 - Oil Shows
 - Titled O/W Contacts
 - Dolomitization
 - Water Salinities
 - Sulfur Deposits
 - Corrosive Zones
- Some Example Case Histories
- What Makes this of Commercial Interest?
- Breakout Sessions and Anecdotal Data Gathering

THE ROZ BACKGROUND

Original Oil Accumulation Under Static Aquifer Conditions (A Hypothetical Example)

Original Accumulation Subject to a Westward Regional Tilt & Forming a ROZ

TYPE 1 ROZ

Original Accumulation with a Breached then Repaired Seal & Forming a ROZ

TYPE 2 ROZ

Change in Hydrodynamic Conditions, Sweep of the Lower Oil Column, Oil/water Contact Tilt, and Development Of The Residual Oil Zone

TYPE 3 ROZ

Attributes of the ROZ Types

ROZ TYPE	Oil-Water Contact	Base of Oil Saturation	Other Characteristics				
Regional Tilt (1)	Horizontal	Tilted	Wedge with thin side Downdip				
Breached Seal and Reaccumulation (2)	Horizontal	Horizontal	Stratified Tar Mats, Anomolously Low GOR				
Hydrodynamic Tilt (3)	Tilted	Horizontal	Wedge with thin side in Direction of Flow				
			(to Spill Point)				

So Let's Examine the Evidence for Type 3 in the Permian Basin

First, Let's Look at OWC Tilt

Seminole (San Andres) Field O/W Contact Structure Map – Adapted from Texas Railroad Commission Unitization Filings, 1969

Wasson Field Oil-Water Contact Contour Map – Texas RR Commission Filing, October 1964

Wasson Field Area O/W Contact Structural Contours*

Research Partnership to Secure Energy for America

Wasson and Seminole are Huge Fields We Know a Lot About

- Are They Unique?
 Tilted OWCs?
 Very Thick ROZs?
 In being Exploited in the ROZ?
- We Will Make a Case That They are Not

Distribution of Tilted Oil-Water Contacts in the Northern Shelf and Central Basin Platform Areas of the Permian Basin*

* from Ref 6

Melzer CQnsulting

Other Anecdotal Evidence

- Mutual Occurrence of Water, Oil and a Source of Sulfur
 - Water
 - Flushed Oil (Replenishing the Food for the Anaerobes)
 - Sulfur (product-of-reaction, residue)
 - As the Source of H₂S (and Sour Oil)
 - As Proof of Oil 'Passing By' & Fairways of Oil Movement
 - As Proof of Oil 'Consumption'

THE FLUSHING MEDIUM

- Updip Origins
 - Surface Caverns
 - Karst
- Evidence of "Connection" to Petroleum Sources and Entrapments
 - Back to the Fairway Concept
 - ROZs
 - Sulfur?
- As Facilitator of Pervasive Dolomitization
- Discharge Concepts
 - Lineaments
 - Outcrops

Lechiguilla Cave Map

DISCHARGE PATH CONCEPTS

- If we have a source of the water, we have to have discharge points as well
- Direction of OWC tilt is evidence of Movement Direction (we'll come back to this)
- Do we have other pathway clues?

Biogenic Reactions

$CaSO_{4} + HC \implies CaCO_{3} + H_{2}O + S$ Non-Biogenic Chemical Reactions

 $CaCO_3 + Mg \rightarrow MgCaCO_3$

Picked up as Flush Water Moves through Mg Salts?

Sulfur in the ROZ?

Core on Display

The 'Heel of the Boot' of the Central Basin Platform

San Andres Water Salinities and Sulfur Deposits

Melzer COnsulting

What About Other Evidence?

How about Using Trends of Producing San Andres Fields?

SE NM Grayburg & Upper San Andres Dolomitization Trend

Ref: Future Petroleum Provinces in New Mexico – Discovering New Reserves, Philip R. Grant, Jr. and Roy W. Foster, NM Bur of Mining & Mineral Resources, 1989

Do These Fields have Tilted OWCs?

Distribution of Tilted Oil-Water Contacts in the Northern Shelf and Central Basin Platform Areas of the Permian Basin* There are More Fields to Examine, More Work to be Done

* from Ref 6

Melzer CQnsulting

• Residual Oil in Cuttings

• Mud log Utility

Oil, Gas and Water Saturation for Continuous Phase and Residual Hydrocarbon Oil Shows*

* Schowalter, T.T, and Hess, P.D. (1982), Interpretation of Subsurface Hydrocarbon Shows, AAPG Bull Vol 66, No 9, Sep 82, pp 1302-1327

TILTED OIL/WATER CONTACTS

- Previous Work
- Sponsor's Fields
- New Field Evidence

PREVIOUS WORK

PLANNED WORK

DOLOMITIZATION

- Magnesium Rich Waters
- Porosity Enhancements
- Pervasive Zonations
- Geological Timing (Staged Dolomitization?)
-and Thoughts on Wetting

Typical Log Character

- Spontaneous Potential Logs Illustrate Consistent Leftward Shift through the entire ROZ interval
- Porosity and Electric Logs Show Leftward (baseline type) Shift through the Interval
- Log Calculations Result in Sor values in the range of 10-50%
- Transition zones at top and bottom are common

DOLOMITIZATION & PERVASIVE ZONATION (1)

V_t = Total Volume = V_s (Vol solids) + V_f (Vol water)

and $V = m / \rho$ where m = mass and ρ = density

Assume porosity saturated with fresh water ($\rho_f = \rho_w = 1 \text{ gm/cc}$)

For a unit mass of 1, $V_t = (1-\emptyset_i)/\rho_s + \emptyset_i/\rho_w$

Assume initially that is all limestone ($\rho_s = 2.71 \text{ gm/cc}$) and then becomes completely replaced by dolomite ($\rho_s = 2.87 \text{ gm/cc}$). Say that the \emptyset_i for limestone rock was 8%)

 $V_t = (1-.08)/2.71 + .08/1$

 $V_t = 0.34 + 0.08 = 0.42 = Total Volume of the unit mass$

DOLOMITIZATION & PERVASIVE ZONATION (2)

Now, Conserving Volume with complete dolomite replacement of limestone solids – what is new \emptyset (\emptyset_n)?

 $0.42 = (1-\emptyset_n)/\rho_s + \emptyset_n/\rho_w$ $\rho_s^*(0.42) = 1-\emptyset_n + \rho_s^*\emptyset_n/\rho_w$ $\rho_s^*(0.42) - 1 = (\rho_s/\rho_w - 1)^*\emptyset_n \text{ or } \emptyset_n = \{\rho_s^*(0.42) - 1\} / (\rho_s/\rho_w - 1)$ $\emptyset_n = (0.42^*2.87 - 1) / (2.87/1 - 1)$ $\emptyset_n = 0.21/1.87 = 0.109 - 10.9\%$

POROSITY ENHANCEMENT OF 10.9-8.0 = 2.9%

Pre-Entrapment

Melzer CQnsulting

Post Oil Entrapment

ROZ Development and Flushed Entrapment Note: Wetting Change*

* Volumetric Changes in Rock and Pore Structure Due to Dolomitization Not Simulated Here

Melzer CQnsulting

WATER SALINITIES

- Sulfur Water Occurrence
- Source to Discharge Mixing
- Evidence of Pathways

VERTICAL SALINITY PROFILE

Profile of Water Salinity with Increasing Depth (Vacuum Data)

SULFUR ACCUMULATIONS

- Biological Processes
 - Aerobic
 - Anaerobic
- Associations
- Geographical Occurrence
- Quantitative Estimates of Petroleum
 'Consumption'

Value of Old Data Water Salinities

Melzer CQnsulting

CORROSIVE ZONES

- ATTRIBUTES OF EXIT PATHS
- ACIDIC NATURE OF WATER
- WHAT WORK EXISTS ON THESE ZONES?
 - From Corrosion Engineers?
 - Geographically Speaking
 - Coleman Junction
 - Lower San Andres
 - Wichita Albany
- OTHER

Post-Subsidence Phase of Permian Basin Development*

 * Adapted from Lindsay, R.F. (2001), W. Tx Geological Society Fall Symposium, Oct 01, Midland Tx USA

Extensional Phases and Reduction of Hydrodynamic Gradients in the Permian Basin*

Phase III Slow Extension, Pliocene - Recent Phase II Rapid Extension, Middle - Late Miocene

PERMIAN BASIN

* Ref: Lindsay, R.F. (2001), W. Tx Geological Society Fall Symposium, Oct 01, Midland Tx USA

Permian Basin Stratigraphic Column

STRATIGRAPHIC CHART												
SYSTEM	SERIES	DELAWARE BASIN			CENTRAL BASIN PLATFORM	NORTHWEST SHELF			T	MIDLAND BASIN		
		t	Dewey Lake		Dewey Lake		Dewe	y Lake	e	Dewey Lake		
MAN	OCHOA		Rustler		Rustler		Ru	stler		Rustler		
	OCHOA		Salado		Salado		Sa	lado			Salado	
		Castile										
			Lamar	V ord	Tansill		Tar	nsill	-		Tansill	
	LUPE	vare	Bell		Yates	SIOL	Ya	tes	PITA	SIOL	Yates	
			CallyOn		Oueen	d White	Seven	Rivers	B	hitel	Queen	
	ADA	n. G	Canyon		Groubust		0.00	een .		Ž	Gravburg	
ů.	ก๊อ	۵ž	Brushy		San Andres		San A	Andres	₩ E	g	San Andres	
			Canyon		Clorieta	3	Clo	riota	85	Ś	San Angelo	
		g		rion	U. Clearfork			Paddo Blinet	ock bry	rion,	Upper	
	LEONARD	i i	at Bone Spring Send	18	L. Clearfork		630	Tub Drink	b wd	Cle	Leonard	
		n 2nd Bone Spring Sand		Wichita						4	L. Spraberry	
		Bon	and Rame Carlos Rand		Albany		Abo			Wich	Dean	
		- 1 3rd Bone Spring Send		-	Wolfcamp			Hue	со			
	WOLFCAMP		Wolfcamp				olfcamp	Bolsum		Wolfcamp		
PENN	CISCO	Cisco			Cisco	Cisco				Cisco		
	CANYON	Canyon			Canyon	Canyon				Canyon		
	STRAWN	Strawn		Strawn		Strawn				Strawn		
	ΑΤΟΚΑ	Atoka			Atoka		Atoka			Atoka		
	MORROW	Morrow					Morrow					
WISS	CHESTER	Barnett Sh.		Barnett Sh.		Barnett Sh.				U. Mississippian Lm		
	MERAMEC OSAGE	Mississippien Lm.		Mississippian Lm.		Mississippien Lm.			m.	L. Mississippian Lm.		
	KINDERHOOK	Kinderhook			Kinderhook	Kinderhook Woodford			k	Kinderhook		
	UPPER	woodford		Γ	woodford		woodford				woodioid	
Ň	MIDDLE											
	LOWER	Devonian			Devonian	Devonian				Devonian		
SIL	U. NIAGARAN	Upper Silurian			Upper Silurian		Upper Silurian			Upper Silurian		
	L. NIAGARAN	Fusselman			Fusselman		Fusselman			Fusselman		
	ALEXANDRIAN											
ORO	CINCINNATIAN		Montoya		Montoya		Mo	ntoya		м	ontoya SYLVAN SH	
	MOHAWKIAN		Bromide 5 Tulip Cr.		Brornide C Tulip Cr. McKee Sd. S McLish Wordsh Dd. S		Bromide				Bromide Tulio Cr	
	CHAZYAN	- Son					McLish Wattan St		osor	McKee Sd McLish		
		E Oil Creek		Ē	Oil Cr. Concell Ed	Ĩ	OII Cr	Wadd	UN 50.	ŝ	Oll Cr Connell Cr	
		″⊦	Joins	ſ	Joins	ſ"		Joins		Ű	Joins	
	CANADIAN			-	1 00015							
	OZARKIAN	Ellenburger		Ellenburger		Ellenburger				Ellenburger		
CAMBRIAN	UPPER									Wilberns		
										Hickory		

San Andres (Permian Guadalupian)

STRATIGRAPHIC CHART											
SYSTEM	SERIES	DELAWARE BASIN		CENTRAL BASIN PLATFORM		NORTHWEST SHELF			MIDLAND BASIN		
осноа		Dewey Lake Rustler Salado		Dewey Lake		Dewey Lake			Dewey Lake		
	001104			Rustler		Rustler			Rustler		
	UCHUA			Salado			Salado			Salado	
		Castile									
PERMIAN	GUADALUPE	Delaware Mtn. Group	Lamar		Tansili	Vord Whitehorse	Tansill	GOAT SEEP CAPITAN		Tansill	
			Bell Canyon		Yates		Yates		Whitehorse	Yates	
					Seven Rivers		Seven Rivers			Seven Rivers	
			Cherry Canyon		Queen		Queen			Queen	
					Greyburg		Grayburg			Grayburg	
			Brushy Canyon	E	San Andres		San Andres		p	San Andres	
				ž	Giorieta		Giorieta		Š	San Angelo	

MIDDLE SAN ANDRES PALEOGEOGRAPHY with Location of Active Industry ROZ Zones/CO₂ EOR Projects*

 $12/06 \text{ CO}_2$ Flooding Conference

Melzer Consulting

WHERE WE ARE TODAY

WHERE WE THINK WE ARE GOING

(BUT THIS IS RESEARCH, LET'S BE 'NIMBLE')

SUMMARY: THE "ANECDOTAL" EVIDENCE

Oil Shows Titled O/W Contacts Water Salinities, Sulfur Water Corrosive Zones Sulfur Deposits Dolomitization Sources of Water (caverns and karst) Discharge Paths, Lineaments

In the breakout sessions, your observations related

to these are key

BACKUP SLIDES

HESS' SEMINOLE FIELD EXPANSION ANNOUNCEMENT: 5-07

Seminole Sentinel

12 Pages, 1 Insert Sunday, May 20, 2007

Volume 98. Number 064

Hess to Expand

CORP. ANNOUNCES \$300 MILLION PROJECT PLANS

By Dustin Weight Service1 Monseine Eliter

Geines County.

throughout the county's land- scale development in this some," scape and in various locations said Pennian Operations for Hess within the Seminole city limits. Floyd Peterson, Monso crof-

industry in Goines County remains stong, Seminole's largest employer will begin work in July on the first stage of a project that is ponising to extend the recorrest of long-life oil researce of the famed Seminole Son Andres Unit (SSAU) for another 20-oius veam.

epiecesi.tgr.#epifeceGree.

Seminole office Thursday, the campage, along with major contres Beitäh Petoleum (BP). Exam Moleil, Occidental Petrolaum (OXY), Monthon, Cherron and Gaussiles, have agreed to an approximate \$300 million introduced to extend production in the Residual

OE Zone (ROZ).

"We have operated a pilo-t The Hess Corp.'s green and program on this procedure since yellow guggiadas have been a 1994 and a second program since long time stagle of Seminole and 2004, and they have proved to be successful, so the contracts have They can be seen spong spreed to move shead with a laner

And to assure that the oil Permian Orenations for Heas Cost.

lies directly underreath the depression of 29 wells that status main pay more and will be convented from produccompine nearly one billion bosrels of incorrentional oil the size be filter production into must be mixed with carbon dioxide forgeoduction.

The first stope of the geocogalizes, he capacity of development will include the deepening of 47 gapducsion.

According to Peterson, the RO2 wells into, the ROZ, and, the tion to calson dioxide injection.

In addition to the field.

See HESS Page 3 :

Melzer COnsulting

Hess First Phase of Expansion Geology of the Residual on Zone Commerce. The Seninole Field, was

Constitution Constitution France Consti-

this takes place, it does nothing but boost the local economy," said. Sheby Concernity, Chief Brouthre, Officer of the Seminole Chamberof

fest discovered in 1936 with. peoply clop, from the Son, Andeva formation.

The original development. togasted the committional main. gest tone, containing exception assain one billion basels of oil overing at area of dimost 1.6.000 acres.

The SSAU was formed in. 1969 to begin water flooding. outcostage, and in 1980, the recommendation to inject callon. dioxide into the formation was appeared by the working interest owners, which led to the construction of the Seminole Gas. Processing Plant and the injection of carbon dioxide into the SSAU in 1993

For mumerous years, Gaines, County has led the state in oil. production, according, figures posted. monthly by the Texas Rolload. Commission.

Wasson Field Area with San Andres Formation Producing Units and Attributes

* Source: Reference 5